Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An approximate functional equation for the Riemann zeta function with exponentially decaying error (1910.05754v2)

Published 13 Oct 2019 in math.NT

Abstract: It is known by a formula of Hasse-Sondow that the Riemann zeta function is given, for any $ s=\sigma+it \in \mathbb{C}$, by $ \sum_{n=0}{\infty} \widetilde{A}(n,s)$ where $$ \widetilde{A}(n,s):=\frac{1}{2{n+1}(1-2{1-s})} \sum_{k=0}n \binom{n}{k}\frac{(-1)k}{(k+1)s}.$$ We prove the following approximate functional equation for the Hasse-Sondow presentation: For $ \vert t \vert = \pi xy $ and $ 2y \neq (2N-1)\pi $ then $$ \zeta(s)= \sum_{n \leq x } \widetilde{A}(n,s)+\frac{\chi(s)}{1-2{s-1}} \left (\sum_{k \leq y} (2k-1){s-1} \right ) +O \left (e{-\omega(x,y) t} \right ), $$ where $ 0 <\omega(x,y)$ is a certain transcendental number determined by $ x$ and $ y$. A central feature of our new approximate functional equation is that its error term is of exponential rate of decay. The proof is based on a study, via saddle point techniques, of the asymptotic properties of the function $$ \widetilde{A}(u,s):= \frac{1}{2{u+1} (1-2{1-s}) \Gamma(s)} \int_{0}{\infty} \left ( e{-w} \left ( 1- e{-w} \right)u \right ) w{s-1} dw,$$ and integrals related to it.

Summary

We haven't generated a summary for this paper yet.