Papers
Topics
Authors
Recent
2000 character limit reached

Predicting atmospheric turbulence for secure quantum communications in free space (2406.14768v1)

Published 20 Jun 2024 in quant-ph, physics.comp-ph, and physics.optics

Abstract: Atmospheric turbulence is the main barrier to large-scale free-space quantum communication networks. Aberrations distort optical information carriers, thus limiting or preventing the possibility of establishing a secure link between two parties. For this reason, forecasting the turbulence strength within an optical channel is highly desirable, as it allows for knowing the optimal timing to establish a secure link in advance. Here, we train a Recurrent Neural Network, TAROCCO, to predict the turbulence strength within a free-space channel. The training is based on weather and turbulence data collected over 9 months for a 5.4 km intra-city free-space link across the City of Ottawa. The implications of accurate predictions from our network are demonstrated in a simulated high-dimensional Quantum Key Distribution protocol based on orbital angular momentum states of light across different turbulence regimes. TAROCCO will be crucial in validating a free-space channel to optimally route the key exchange for secure communications in real experimental scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 30 likes about this paper.