Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TTQA-RS- A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization (2406.14732v2)

Published 20 Jun 2024 in cs.CL and cs.IR

Abstract: Question answering (QA) over tables and text has gained much popularity over the years. Multi-hop table-text QA requires multiple hops between the table and text, making it a challenging QA task. Although several works have attempted to solve the table-text QA task, most involve training the models and requiring labeled data. In this paper, we have proposed a Retrieval Augmented Generation (RAG) based model - TTQA-RS: A break-down prompting approach for Multi-hop Table-Text Question Answering with Reasoning and Summarization. Our model uses an enhanced retriever for table-text information retrieval and uses augmented knowledge, including table-text summary with decomposed sub-questions with answers for a reasoning-based table-text QA. Using open-source LLMs, our model outperformed all existing prompting methods for table-text QA tasks on existing table-text QA datasets, such as HybridQA and OTT-QA's development set. Our experiments demonstrate the potential of prompt-based approaches using open-source LLMs. Additionally, by using LLaMA3-70B, our model achieved state-of-the-art performance for prompting-based methods on multi-hop table-text QA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jayetri Bardhan (4 papers)
  2. Bushi Xiao (6 papers)
  3. Daisy Zhe Wang (31 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets