Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Physical networks become what they learn (2406.09689v2)

Published 14 Jun 2024 in cond-mat.dis-nn, cond-mat.soft, and cond-mat.stat-mech

Abstract: Physical networks can develop diverse responses, or functions, by design, evolution or learning. We focus on electrical networks of nodes connected by resistive edges. Such networks can learn by adapting edge conductances to lower a cost function that penalizes deviations from a desired response. The network must also satisfy Kirchhoff's law, balancing currents at nodes, or, equivalently, minimizing total power dissipation by adjusting node voltages. The adaptation is thus a double optimization process, in which a cost function is minimized with respect to conductances, while dissipated power is minimized with respect to node voltages. Here we study how this physical adaptation couples the cost landscape, the landscape of the cost function in the high-dimensional space of edge conductances, to the physical landscape, the dissipated power in the high-dimensional space of node voltages. We show how adaptation links the physical and cost Hessian matrices, suggesting that the physical response of networks to perturbations holds significant information about the functions to which they are adapted.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: