Papers
Topics
Authors
Recent
2000 character limit reached

The polarization hierarchy for polynomial optimization over convex bodies, with applications to nonnegative matrix rank (2406.09506v1)

Published 13 Jun 2024 in math.OC and quant-ph

Abstract: We construct a convergent family of outer approximations for the problem of optimizing polynomial functions over convex bodies subject to polynomial constraints. This is achieved by generalizing the polarization hierarchy, which has previously been introduced for the study of polynomial optimization problems over state spaces of $C*$-algebras, to convex cones in finite dimensions. If the convex bodies can be characterized by linear or semidefinite programs, then the same is true for our hierarchy. Convergence is proven by relating the problem to a certain de Finetti theorem for general probabilistic theories, which are studied as possible generalizations of quantum mechanics. We apply the method to the problem of nonnegative matrix factorization, and in particular to the nested rectangles problem. A numerical implementation of the third level of the hierarchy is shown to give rise to a very tight approximation for this problem.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.