Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A bounded degree SOS hierarchy for polynomial optimization (1501.06126v2)

Published 25 Jan 2015 in math.OC

Abstract: We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem $(P)::f{\ast}=\min {\,f(x):x\in K\,}$ on a compact basic semi-algebraic set $K\subset\Rn$. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine's positivity certificate and some advantages of the standard SOS-hierarchy. In particular it has the following attractive features: (a) In contrast to the standard SOS-hierarchy, for each relaxation in the hierarchy, the size of the matrix associated with the semidefinite constraint is the same and fixed in advance by the user. (b) In contrast to the LP-hierarchy, finite convergence occurs at the first step of the hierarchy for an important class of convex problems. Finally (c) some important techniques related to the use of point evaluations for declaring a polynomial to be zero and to the use of rank-one matrices make an efficient implementation possible. Preliminary results on a sample of non convex problems are encouraging.

Summary

We haven't generated a summary for this paper yet.