Papers
Topics
Authors
Recent
2000 character limit reached

Convex ordering for stochastic control: the swing contracts case (2406.07464v2)

Published 11 Jun 2024 in q-fin.MF

Abstract: We investigate propagation of convexity and convex ordering on a typical stochastic optimal control problem, namely the pricing of \q{\emph{Take-or-Pay}} swing option, a financial derivative product commonly traded on energy markets. The dynamics of the underlying asset is modelled by an \emph{ARCH} model with convex coefficients. We prove that the value function associated to the stochastic optimal control problem is a convex function of the underlying asset price. We also introduce a domination criterion offering insights into the monotonicity of the value function with respect to parameters of the underlying \emph{ARCH} coefficients. We particularly focus on the one-dimensional setting where, by means of Stein's formula and regularization techniques, we show that the convexity assumption for the \emph{ARCH} coefficients can be relaxed with a semi-convexity assumption. To validate the results presented in this paper, we also conduct numerical illustrations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.