Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NarrativeBridge: Enhancing Video Captioning with Causal-Temporal Narrative (2406.06499v3)

Published 10 Jun 2024 in cs.CV and cs.HC

Abstract: Existing video captioning benchmarks and models lack causal-temporal narrative, which is sequences of events linked through cause and effect, unfolding over time and driven by characters or agents. This lack of narrative restricts models' ability to generate text descriptions that capture the causal and temporal dynamics inherent in video content. To address this gap, we propose NarrativeBridge, an approach comprising of: (1) a novel Causal-Temporal Narrative (CTN) captions benchmark generated using a LLM and few-shot prompting, explicitly encoding cause-effect temporal relationships in video descriptions; and (2) a Cause-Effect Network (CEN) with separate encoders for capturing cause and effect dynamics, enabling effective learning and generation of captions with causal-temporal narrative. Extensive experiments demonstrate that CEN significantly outperforms state-of-the-art models in articulating the causal and temporal aspects of video content: 17.88 and 17.44 CIDEr on the MSVD-CTN and MSRVTT-CTN datasets, respectively. Cross-dataset evaluations further showcase CEN's strong generalization capabilities. The proposed framework understands and generates nuanced text descriptions with intricate causal-temporal narrative structures present in videos, addressing a critical limitation in video captioning. For project details, visit https://narrativebridge.github.io/.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com