Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Topo-Field: Topometric mapping with Brain-inspired Hierarchical Layout-Object-Position Fields (2406.05985v3)

Published 10 Jun 2024 in cs.RO

Abstract: Mobile robots require comprehensive scene understanding to operate effectively in diverse environments, enriched with contextual information such as layouts, objects, and their relationships. Although advances like neural radiation fields (NeRFs) offer high-fidelity 3D reconstructions, they are computationally intensive and often lack efficient representations of traversable spaces essential for planning and navigation. In contrast, topological maps are computationally efficient but lack the semantic richness necessary for a more complete understanding of the environment. Inspired by a population code in the postrhinal cortex (POR) strongly tuned to spatial layouts over scene content rapidly forming a high-level cognitive map, this work introduces Topo-Field, a framework that integrates Layout-Object-Position (LOP) associations into a neural field and constructs a topometric map from this learned representation. LOP associations are modeled by explicitly encoding object and layout information, while a Large Foundation Model (LFM) technique allows for efficient training without extensive annotations. The topometric map is then constructed by querying the learned neural representation, offering both semantic richness and computational efficiency. Empirical evaluations in multi-room environments demonstrate the effectiveness of Topo-Field in tasks such as position attribute inference, query localization, and topometric planning, successfully bridging the gap between high-fidelity scene understanding and efficient robotic navigation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.