Papers
Topics
Authors
Recent
2000 character limit reached

Modeling Temporal Dependencies within the Target for Long-Term Time Series Forecasting (2406.04777v2)

Published 7 Jun 2024 in cs.LG

Abstract: Long-term time series forecasting (LTSF) is a critical task across diverse domains. Despite significant advancements in LTSF research, we identify a performance bottleneck in existing LTSF methods caused by the inadequate modeling of Temporal Dependencies within the Target (TDT). To address this issue, we propose a novel and generic temporal modeling framework, Temporal Dependency Alignment (TDAlign), that equips existing LTSF methods with TDT learning capabilities. TDAlign introduces two key innovations: 1) a loss function that aligns the change values between adjacent time steps in the predictions with those in the target, ensuring consistency with variation patterns, and 2) an adaptive loss balancing strategy that seamlessly integrates the new loss function with existing LTSF methods without introducing additional learnable parameters. As a plug-and-play framework, TDAlign enhances existing methods with minimal computational overhead, featuring only linear time complexity and constant space complexity relative to the prediction length. Extensive experiments on six strong LTSF baselines across seven real-world datasets demonstrate the effectiveness and flexibility of TDAlign. On average, TDAlign reduces baseline prediction errors by \textbf{1.47\%} to \textbf{9.19\%} and change value errors by \textbf{4.57\%} to \textbf{15.78\%}, highlighting its substantial performance improvements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: