Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamically Expanding Capacity of Autonomous Driving with Near-Miss Focused Training Framework (2406.02865v1)

Published 5 Jun 2024 in cs.RO

Abstract: The long-tail distribution of real driving data poses challenges for training and testing autonomous vehicles (AV), where rare yet crucial safety-critical scenarios are infrequent. And virtual simulation offers a low-cost and efficient solution. This paper proposes a near-miss focused training framework for AV. Utilizing the driving scenario information provided by sensors in the simulator, we design novel reward functions, which enable background vehicles (BV) to generate near-miss scenarios and ensure gradients exist not only in collision-free scenes but also in collision scenarios. And then leveraging the Robust Adversarial Reinforcement Learning (RARL) framework for simultaneous training of AV and BV to gradually enhance AV and BV capabilities, as well as generating near-miss scenarios tailored to different levels of AV capabilities. Results from three testing strategies indicate that the proposed method generates scenarios closer to near-miss, thus enhancing the capabilities of both AVs and BVs throughout training.

Summary

We haven't generated a summary for this paper yet.