Conditional Idempotent Generative Networks (2406.02841v1)
Abstract: We propose Conditional Idempotent Generative Networks (CIGN), a novel approach that expands upon Idempotent Generative Networks (IGN) to enable conditional generation. While IGNs offer efficient single-pass generation, they lack the ability to control the content of the generated data. CIGNs address this limitation by incorporating conditioning mechanisms, allowing users to steer the generation process towards specific types of data. We establish the theoretical foundations for CIGNs, outlining their scope, loss function design, and evaluation metrics. We then present two potential architectures for implementing CIGNs: channel conditioning and filter conditioning. Finally, we discuss experimental results on the MNIST dataset, demonstrating the effectiveness of both approaches. Our findings pave the way for further exploration of CIGNs on larger datasets and with more powerful computing resources to determine the optimal implementation strategy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.