Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cluster-guided Image Synthesis with Unconditional Models (2112.12911v1)

Published 24 Dec 2021 in cs.CV

Abstract: Generative Adversarial Networks (GANs) are the driving force behind the state-of-the-art in image generation. Despite their ability to synthesize high-resolution photo-realistic images, generating content with on-demand conditioning of different granularity remains a challenge. This challenge is usually tackled by annotating massive datasets with the attributes of interest, a laborious task that is not always a viable option. Therefore, it is vital to introduce control into the generation process of unsupervised generative models. In this work, we focus on controllable image generation by leveraging GANs that are well-trained in an unsupervised fashion. To this end, we discover that the representation space of intermediate layers of the generator forms a number of clusters that separate the data according to semantically meaningful attributes (e.g., hair color and pose). By conditioning on the cluster assignments, the proposed method is able to control the semantic class of the generated image. Our approach enables sampling from each cluster by Implicit Maximum Likelihood Estimation (IMLE). We showcase the efficacy of our approach on faces (CelebA-HQ and FFHQ), animals (Imagenet) and objects (LSUN) using different pre-trained generative models. The results highlight the ability of our approach to condition image generation on attributes like gender, pose and hair style on faces, as well as a variety of features on different object classes.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Markos Georgopoulos (19 papers)
  2. James Oldfield (10 papers)
  3. Yannis Panagakis (53 papers)
  4. Grigorios G Chrysos (19 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.