Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sampling From Multiscale Densities With Delayed Rejection Generalized Hamiltonian Monte Carlo (2406.02741v1)

Published 4 Jun 2024 in stat.CO

Abstract: With the increasing prevalence of probabilistic programming languages, Hamiltonian Monte Carlo (HMC) has become the mainstay of applied Bayesian inference. However HMC still struggles to sample from densities with multiscale geometry: a large step size is needed to efficiently explore low curvature regions while a small step size is needed to accurately explore high curvature regions. We introduce the delayed rejection generalized HMC (DR-G-HMC) sampler that overcomes this challenge by employing dynamic step size selection, inspired by differential equation solvers. In a single sampling iteration, DR-G-HMC sequentially makes proposals with geometrically decreasing step sizes if necessary. This simulates Hamiltonian dynamics with increasing fidelity that, in high curvature regions, generates proposals with a higher chance of acceptance. DR-G-HMC also makes generalized HMC competitive by decreasing the number of rejections which otherwise cause inefficient backtracking and prevents directed movement. We present experiments to demonstrate that DR-G-HMC (1) correctly samples from multiscale densities, (2) makes generalized HMC methods competitive with the state of the art No-U-Turn sampler, and (3) is robust to tuning parameters.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 54 likes.

Upgrade to Pro to view all of the tweets about this paper: