Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Knowlegde Graphs for Interpretable Feature Generation (2406.00544v1)

Published 1 Jun 2024 in cs.LG and cs.AI

Abstract: The quality of Machine Learning (ML) models strongly depends on the input data, as such Feature Engineering (FE) is often required in ML. In addition, with the proliferation of ML-powered systems, especially in critical contexts, the need for interpretability and explainability becomes increasingly important. Since manual FE is time-consuming and requires case specific knowledge, we propose KRAFT, an AutoFE framework that leverages a knowledge graph to guide the generation of interpretable features. Our hybrid AI approach combines a neural generator to transform raw features through a series of transformations and a knowledge-based reasoner to evaluate features interpretability using Description Logics (DL). The generator is trained through Deep Reinforcement Learning (DRL) to maximize the prediction accuracy and the interpretability of the generated features. Extensive experiments on real datasets demonstrate that KRAFT significantly improves accuracy while ensuring a high level of interpretability.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.