Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Formalising the Local Compactness of the Adele Ring (2405.19270v3)

Published 29 May 2024 in cs.LO and math.NT

Abstract: The adele ring of a number field is a central object in modern number theory. Its status as a locally compact topological ring is one of the key reasons why. We describe a formal proof that the adele ring of a number field is locally compact implemented in the Lean 4 theorem prover. Our work includes the formalisations of new types, including the completion of a number field at an infinite place, the infinite adele ring and the finite $S$-adele ring, as well as formal proofs that completions of a number field are locally compact and that their rings of integers at finite places are compact.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. Nicolas Bourbaki. Elements of mathematics. General topology. Part 1. Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966.
  2. Formalising perfectoid spaces. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, pages 299–312, New York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3372885.3373830.
  3. John William Scott Cassels and Albrecht Fröhlich. Algebraic number theory. Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967.
  4. María Inés de Frutos-Fernández. Formalizing the Ring of Adèles of a Global Field. In June Andronick and Leonardo de Moura, editors, 13th International Conference on Interactive Theorem Proving (ITP 2022), volume 237 of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:18, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2022/16723, doi:10.4230/LIPIcs.ITP.2022.14.
  5. María Inés de Frutos-Fernández and Filippo A. E. Nuccio Mortarino Majno di Capriglio. A formalization of complete discrete valuation rings and local fields. In Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2024, pages 190–204, New York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3636501.3636942.
  6. The mathlib Community. The lean mathematical library. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, POPL ’20. ACM, January 2020. URL: http://dx.doi.org/10.1145/3372885.3373824, doi:10.1145/3372885.3373824.
  7. Alexander Ostrowski. Über einige Lösungen der Funktionalgleichung ψ⁢(x)⋅ψ⁢(x)=ψ⁢(x⁢y)⋅𝜓𝑥𝜓𝑥𝜓𝑥𝑦\psi(x)\cdot\psi(x)=\psi(xy)italic_ψ ( italic_x ) ⋅ italic_ψ ( italic_x ) = italic_ψ ( italic_x italic_y ). Acta Mathematica, 41(none):271 – 284, 1916. doi:10.1007/BF02422947.
  8. Xavier Roblot. leanprover-community/mathlib#17844: add infinite_places. GitHub, 2022. URL: https://github.com/leanprover-community/mathlib/pull/17844.
  9. Jean-Pierre Serre. Local Fields. Graduate Texts in Mathematics. Springer New York, 1979. doi:https://doi.org/10.1007/978-1-4757-5673-9.
  10. John T. Tate. Fourier analysis in number fields, and hecke’s zeta-functions. In Algebraic Number Theory, Proc. Instructional Conf., Brighton, 1965, 1950. URL: https://api.semanticscholar.org/CorpusID:117898073.
  11. Floris van Doorn. Formalized Haar Measure. In Liron Cohen and Cezary Kaliszyk, editors, 12th International Conference on Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz International Proceedings in Informatics (LIPIcs), pages 18:1–18:17, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2021.18, doi:10.4230/LIPIcs.ITP.2021.18.
  12. A. Weil. Sur les espaces à structure uniforme et sur la topologie générale. Actualités scientifiques et industrielles. Hermann & cie, 1938. URL: https://books.google.co.uk/books?id=qVfvAAAAMAAJ.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 11 likes.