Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Formalization of Complete Discrete Valuation Rings and Local Fields (2310.01998v2)

Published 3 Oct 2023 in cs.LO and math.NT

Abstract: Local fields, and fields complete with respect to a discrete valuation, are essential objects in commutative algebra, with applications to number theory and algebraic geometry. We formalize in Lean the basic theory of discretely valued fields. In particular, we prove that the unit ball with respect to a discrete valuation on a field is a discrete valuation ring and, conversely, that the adic valuation on the field of fractions of a discrete valuation ring is discrete. We define finite extensions of valuations and of discrete valuation rings, and prove some global-to-local results. Building on this general theory, we formalize the abstract definition and some fundamental properties of local fields. As an application, we show that finite extensions of the field $\mathbb{Q}_p$ of $p$-adic numbers and of the field $\mathbb{F}_p(!(X)!)$ of Laurent series over $\mathbb{F}_p$ are local fields.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. Anne Baanen. 2022. Use and Abuse of Instance Parameters in the Lean Mathematical Library. In 13th International Conference on Interactive Theorem Proving (ITP 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 4:1–4:20. https://doi.org/10.4230/LIPIcs.ITP.2022.4
  2. A Formalization of Dedekind Domains and Class Groups of Global Fields. In 12th International Conference on Interactive Theorem Proving (ITP 2021) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 193), Liron Cohen and Cezary Kaliszyk (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 5:1–5:19. https://doi.org/10.4230/LIPIcs.ITP.2021.5
  3. A formalization of Dedekind domains and class groups of global fields. J. Automat. Reason. 66, 4 (2022), 611–637. https://doi.org/10.1007/s10817-022-09644-0
  4. Non-archimedean analysis : a systematic approach to rigid analytic geometry. Springer-Verlag Berlin Heidelberg, Berlin.
  5. Nicolas Bourbaki. 1971. Éléments de mathématique. Topologie générale. Chapitres 1 à 4. Hermann, Paris. 357 pages.
  6. Nicolas Bourbaki. 1985. Éléments de mathématique. Algèbre commutative. Chapitres 5 à 7. Masson, Paris. 351 pages.
  7. Nicolas Bourbaki. 2007. Éléments de mathématique. Algèbre. Chapitres 4 à 7. Springer, Berlin. 422 pages.
  8. Formalising Perfectoid Spaces. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery, New York, NY, USA, 299–312. https://doi.org/10.1145/3372885.3373830
  9. Mario Carneiro. 2019. The Type Theory of Lean. Master thesis. https://github.com/digama0/lean-type-theory/releases/download/v1.0/main.pdf.
  10. Aaron Crighton. 2021. Hensel’s Lemma for the p-adic Integers. Archive of Formal Proofs (March 2021). https://isa-afp.org/entries/Padic_Ints.html, Formal proof development.
  11. Aaron Crighton. 2022. p𝑝pitalic_p-adic Fields and p𝑝pitalic_p-adic Semialgebraic Sets. Formal proof development. https://isa-afp.org/entries/Padic_Field.html.
  12. María Inés de Frutos-Fernández. 2022. Formalizing the Ring of Adèles of a Global Field. In 13th International Conference on Interactive Theorem Proving (ITP 2022) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 237), June Andronick and Leonardo de Moura (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 14:1–14:18. https://doi.org/10.4230/LIPIcs.ITP.2022.14
  13. María Inés de Frutos-Fernández. 2023. Formalizing Norm Extensions and Applications to Number Theory. In 14th International Conference on Interactive Theorem Proving (ITP 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 268), Adam Naumowicz and René Thiemann (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 13:1–13:18. https://doi.org/10.4230/LIPIcs.ITP.2023.13
  14. The Lean Theorem Prover (System Description). In Automated Deduction - CADE-25 (Lecture Notes in Computer Science, Vol. 9195), Amy P. Felty and Aart Middeldorp (Eds.). Springer International Publishing, Cham, 378–388. https://doi.org/10.1007/978-3-319-21401-6_26
  15. Manuel Eberl. 2021. Formal Puiseux Series. https://isa-afp.org/entries/Formal_Puiseux_Series.html, Formal proof development.
  16. Gerhard Frey. 2009. The Way to the Proof of Fermat’s Last Theorem. Annales de la Faculté des sciences de Toulouse : Mathématiques Ser. 6, 18, S2 (2009), 5–23. https://doi.org/10.5802/afst.1227
  17. Hendrik W. Lenstra and Peter Stevenhagen. 1997. Class Field Theory and the First Case of Fermat’s Last Theorem. In Modular Forms and Fermat’s Last Theorem, Gary Cornell, Joseph H. Silverman, and Glenn Stevens (Eds.). Springer New York, New York, NY, 499–503. https://doi.org/10.1007/978-1-4612-1974-3_18
  18. Amelia Livingston. 2023. Group Cohomology in the Lean Community Library. In 14th International Conference on Interactive Theorem Proving (ITP 2023) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 268), Adam Naumowicz and René Thiemann (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 22:1–22:17. https://doi.org/10.4230/LIPIcs.ITP.2023.22
  19. A univalent formalization of the p-adic numbers. Mathematical Structures in Computer Science 25, 5 (2015), 1147–1171. https://doi.org/10.1017/S0960129514000541
  20. Jean-Pierre Serre. 1962. Corps locaux. Publications de l’Institut de Mathématique de l’Université de Nancago 8. Actualités Scientifiques et Industrielles, Vol. 1296. Hermann, Paris. 243 pages.
  21. Bas Spitters and Eelis van der Weegen. 2011. Type classes for mathematics in type theory. Mathematical Structures in Computer Science 21, 4 (2011), 795–825. https://doi.org/10.1017/S0960129511000119
  22. John T. Tate. 1967. Global class field theory. In Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965). Thompson, Washington, D.C., 162–203.
Citations (1)

Summary

We haven't generated a summary for this paper yet.