Papers
Topics
Authors
Recent
2000 character limit reached

Design Principles for Falsifiable, Replicable and Reproducible Empirical ML Research (2405.18077v1)

Published 28 May 2024 in cs.LG and cs.AI

Abstract: Empirical research plays a fundamental role in the machine learning domain. At the heart of impactful empirical research lies the development of clear research hypotheses, which then shape the design of experiments. The execution of experiments must be carried out with precision to ensure reliable results, followed by statistical analysis to interpret these outcomes. This process is key to either supporting or refuting initial hypotheses. Despite its importance, there is a high variability in research practices across the machine learning community and no uniform understanding of quality criteria for empirical research. To address this gap, we propose a model for the empirical research process, accompanied by guidelines to uphold the validity of empirical research. By embracing these recommendations, greater consistency, enhanced reliability and increased impact can be achieved.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.