From the Dawn of Neutrino Astronomy to A New View of the Extreme Universe (2405.17623v2)
Abstract: Over the past decade, neutrino astronomy has emerged as a new window into the extreme and hidden universe. Current-generation experiments have detected high-energy neutrinos of astrophysical origin and identified the first sources, opening the field to discovery. Looking ahead, the authors of this Perspective identify seven major open questions in neutrino astrophysics and particle physics that could lead to transformative discoveries over the next 20 years. These multidisciplinary questions range from understanding the vicinity of a black hole to unveiling the nature of neutrino mass, among other topics. Additionally, we critically review the current experimental capabilities and their limitations and, from there, discuss the interplay between different proposed neutrino telescope technologies and analysis techniques. The authors firmly believe that achieving the immense discovery potential over the next two decades demands a model of global partnership and specialized, complementary detectors. This collaborative neutrino telescope network will pave the way for a thriving multimessenger era, transforming our understanding of neutrino physics, astrophysics, and the extreme universe.
- Christian Spiering, “Towards High-Energy Neutrino Astronomy. A Historical Review,” Eur. Phys. J. H 37, 515–565 (2012), arXiv:1207.4952 [astro-ph.IM] .
- M. G. Aartsen et al. (IceCube), “The IceCube Neutrino Observatory: Instrumentation and Online Systems,” JINST 12, P03012 (2017a), arXiv:1612.05093 [astro-ph.IM] .
- M. G. Aartsen et al. (IceCube), “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342, 1242856 (2013a), arXiv:1311.5238 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data,” Phys. Rev. Lett. 113, 101101 (2014), arXiv:1405.5303 [astro-ph.HE] .
- Ke Fang, John S. Gallagher, and Francis Halzen, “The TeV Diffuse Cosmic Neutrino Spectrum and the Nature of Astrophysical Neutrino Sources,” Astrophys. J. 933, 190 (2022), arXiv:2205.03740 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Observation of high-energy neutrinos from the Galactic plane,” Science 380, adc9818 (2023a), arXiv:2307.04427 [astro-ph.HE] .
- Ke Fang, John S. Gallagher, and Francis Halzen, “The Milky Way revealed to be a neutrino desert by the IceCube Galactic plane observation,” Nature Astron. 8, 241–246 (2024), arXiv:2306.17275 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Evidence for neutrino emission from the nearby active galaxy NGC 1068,” Science 378, 538–543 (2022a), arXiv:2211.09972 [astro-ph.HE] .
- George C. Privon et al. (IceCube), “Search for high-energy neutrino emission from hard X-ray AGN with IceCube,” PoS ICRC2023, 1032 (2023), arXiv:2307.15349 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube, Fermi-LAT, MAGIC, AGILE, ASAS-SN, HAWC, H.E.S.S., INTEGRAL, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, Swift NuSTAR, VERITAS, VLA/17B-403), “Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A,” Science 361, eaat1378 (2018a), arXiv:1807.08816 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert,” Science 361, 147–151 (2018b), arXiv:1807.08794 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube-Gen2), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021a), arXiv:2008.04323 [astro-ph.HE] .
- Bair Shoibonov (Baikal), “Baikal-GVD - the Next Generation Neutrino Telescope in Lake Baikal,” J. Phys. Conf. Ser. 1263, 012005 (2019).
- Matteo Sanguineti (KM3NeT), “Status and physics results of the KM3NeT experiment,” Nuovo Cim. C 46, 4 (2022).
- Nicolai Bailly et al., “Two-year optical site characterization for the Pacific Ocean Neutrino Experiment (P-ONE) in the Cascadia Basin,” Eur. Phys. J. C 81, 1071 (2021), arXiv:2108.04961 [astro-ph.IM] .
- A. Roberts, “The Birth of high-energy neutrino astronomy: A Personal history of the DUMAND project,” Rev. Mod. Phys. 64, 259–312 (1992).
- M. Ageron et al. (ANTARES), “ANTARES: the first undersea neutrino telescope,” Nucl. Instrum. Meth. A 656, 11–38 (2011), arXiv:1104.1607 [astro-ph.IM] .
- Z. P. Ye et al., “Proposal for a neutrino telescope in South China Sea,” (2022), arXiv:2207.04519 [astro-ph.HE] .
- Tian-Qi Huang, Zhen Cao, Mingjun Chen, Jiali Liu, Zike Wang, Xiaohao You, and Ying Qi, “Proposal for the High Energy Neutrino Telescope,” PoS ICRC2023, 1080 (2023).
- A. Nepomuk Otte et al., “Trinity: The PeV Neutrino Observatory,” PoS ICRC2023, 1170 (2023).
- Will Thompson et al. (TAMBO), “TAMBO: Searching for Tau Neutrinos in the Peruvian Andes,” PoS ICRC2023, 1109 (2023).
- Markus Ahlers and Francis Halzen, “High-energy cosmic neutrino puzzle: a review,” Rept. Prog. Phys. 78, 126901 (2015).
- M. G. Aartsen et al. (IceCube), “The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux,” (2017b), arXiv:1710.01191 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Detection of astrophysical tau neutrino candidates in IceCube,” Eur. Phys. J. C 82, 1031 (2022b), arXiv:2011.03561 [hep-ex] .
- M. G. Aartsen et al. (IceCube), “Characteristics of the diffuse astrophysical electron and tau neutrino flux with six years of IceCube high energy cascade data,” Phys. Rev. Lett. 125, 121104 (2020), arXiv:2001.09520 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Detection of astrophysical tau neutrino candidates in IceCube,” Eur. Phys. J. C 82, 1031 (2022c), arXiv:2011.03561 [hep-ex] .
- M. G. Aartsen et al. (IceCube), “Detection of a particle shower at the Glashow resonance with IceCube,” Nature 591, 220–224 (2021b), [Erratum: Nature 592, E11 (2021)], arXiv:2110.15051 [hep-ex] .
- R. Abbasi et al. (IceCube), “The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data,” Phys. Rev. D 104, 022002 (2021a), arXiv:2011.03545 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data,” Astrophys. J. 928, 50 (2022d), arXiv:2111.10299 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “Measurements using the inelasticity distribution of multi-TeV neutrino interactions in IceCube,” Phys. Rev. D 99, 032004 (2019), arXiv:1808.07629 [hep-ex] .
- Andrew M. Hopkins and John F. Beacom, “On the normalisation of the cosmic star formation history,” Astrophys. J. 651, 142–154 (2006), arXiv:astro-ph/0601463 .
- M. G. Aartsen et al. (IceCube), “The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part II: Properties of the Atmospheric and Astrophysical Neutrino Flux,” (2017c), arXiv:1710.01191 [astro-ph.HE] .
- M. Ackermann et al. (Fermi-LAT), “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV,” Astrophys. J. 799, 86 (2015), arXiv:1410.3696 [astro-ph.HE] .
- Georg Weidenspointner, The origin of the cosmic gamma-ray background in the COMPTEL energy range, Ph.D. thesis, Munich University of Technology, Germany (1999).
- K. Watanabe, D. H. Hartmann, M. D. Leising, and L. S. The, “The Diffuse gamma-ray background from supernovae,” Astrophys. J. 516, 285–296 (1999), arXiv:astro-ph/9809197 .
- A. W. Strong, I. V. Moskalenko, and O. Reimer, “A new determination of the extragalactic diffuse gamma-ray background from egret data,” Astrophys. J. 613, 956–961 (2004), arXiv:astro-ph/0405441 .
- M. G. Aartsen et al. (IceCube), “The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux,” Astrophys. J. 835, 45 (2017d), arXiv:1611.03874 [astro-ph.HE] .
- Kohta Murase, Markus Ahlers, and Brian C. Lacki, “Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube,” Phys. Rev. D 88, 121301 (2013), arXiv:1306.3417 [astro-ph.HE] .
- Kohta Murase, Dafne Guetta, and Markus Ahlers, “Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos,” Phys. Rev. Lett. 116, 071101 (2016), arXiv:1509.00805 [astro-ph.HE] .
- Antonio Capanema, Arman Esmaili, and Kohta Murase, “New constraints on the origin of medium-energy neutrinos observed by IceCube,” Phys. Rev. D 101, 103012 (2020), arXiv:2002.07192 [hep-ph] .
- Antonio Capanema, Arman Esmaili, and Pasquale Dario Serpico, “Where do IceCube neutrinos come from? Hints from the diffuse gamma-ray flux,” JCAP 02, 037 (2021), arXiv:2007.07911 [hep-ph] .
- Roland Svensson, “Non-thermal pair production in compact X-ray sources: first-order Compton cascades in soft radiation fields,” Mon. Not. Roy. Astron. Soc. 227, 403–451 (1987).
- M. Bustamante, “The milky way shines in high-energy neutrinos,” Nature Reviews Physics 6, 8–10 (2023).
- Antonio Ambrosone, Kathrine Mørch Groth, Enrico Peretti, and Markus Ahlers, “Galactic diffuse neutrino emission from sources beyond the discovery horizon,” Physical Review D 109 (2024), 10.1103/physrevd.109.043007.
- M. Ackermann et al. (Fermi-LAT), “Fermi-lat observations of the diffuse γ𝛾\gammaitalic_γ-ray emission: Implications for cosmic rays and the interstellar medium,” Astrophys. J. 750, 3 (2012).
- Daniele Gaggero et al., “The gamma-ray and neutrino sky: A consistent picture of fermi -lat, milagro, and icecube results,” Astrophys. J. 815, L25 (2015).
- M. Ajello et al. (Fermi-LAT), “The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope,” Astrophys. J. 892, 105 (2020), arXiv:1905.10771 [astro-ph.HE] .
- S. Abdollahi et al. (Fermi-LAT), “Fermi𝐹𝑒𝑟𝑚𝑖Fermiitalic_F italic_e italic_r italic_m italic_i Large Area Telescope Fourth Source Catalog,” Astrophys. J. Suppl. 247, 33 (2020), arXiv:1902.10045 [astro-ph.HE] .
- V. A. Acciari et al. (MAGIC), “Constraints on gamma-ray and neutrino emission from NGC 1068 with the MAGIC telescopes,” Astrophys. J. 883, 135 (2019), arXiv:1906.10954 [astro-ph.HE] .
- Yoshiyuki Inoue, Dmitry Khangulyan, Susumu Inoue, and Akihiro Doi, “On high-energy particles in accretion disk coronae of supermassive black holes: implications for MeV gamma rays and high-energy neutrinos from AGN cores,” (2019), 10.3847/1538-4357/ab2715, arXiv:1904.00554 [astro-ph.HE] .
- Yoshiyuki Inoue, Dmitry Khangulyan, and Akihiro Doi, “On the Origin of High-energy Neutrinos from NGC 1068: The Role of Nonthermal Coronal Activity,” Astrophys. J. Lett. 891, L33 (2020), arXiv:1909.02239 [astro-ph.HE] .
- Kohta Murase, Shigeo S. Kimura, and Peter Meszaros, “Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection,” Phys. Rev. Lett. 125, 011101 (2020), arXiv:1904.04226 [astro-ph.HE] .
- Franz E. Bauer et al., “NuSTAR Spectroscopy of Multi-Component X-ray Reflection from NGC 1068,” Astrophys. J. 812, 116 (2015), arXiv:1411.0670 [astro-ph.HE] .
- A. Marinucci et al., “NuSTAR catches the unveiling nucleus of NGC 1068,” Mon. Not. Roy. Astron. Soc. 456, L94–L98 (2016), arXiv:1511.03503 [astro-ph.HE] .
- Claudio Ricci et al., “BAT AGN Spectroscopic Survey - V. X-ray properties of the Swift/BAT 70-month AGN catalog,” Astrophys. J. Suppl. 233, 17 (2017), arXiv:1709.03989 [astro-ph.HE] .
- Violeta Gamez Rosas et al., “Thermal imaging of dust hiding the black hole in NGC 1068,” Nature 602, 403–407 (2022), arXiv:2112.13694 [astro-ph.GA] .
- S. García-Burillo et al., “Alma resolves the torus of ngc 1068: Continuum and molecular line emission,” The Astrophysical Journal Letters 823, L12 (2016).
- Kohta Murase, “Hidden Hearts of Neutrino Active Galaxies,” Astrophys. J. Lett. 941, L17 (2022), arXiv:2211.04460 [astro-ph.HE] .
- Ali Kheirandish, Kohta Murase, and Shigeo S. Kimura, “High-energy Neutrinos from Magnetized Coronae of Active Galactic Nuclei and Prospects for Identification of Seyfert Galaxies and Quasars in Neutrino Telescopes,” Astrophys. J. 922, 45 (2021), arXiv:2102.04475 [astro-ph.HE] .
- Björn Eichmann, Foteini Oikonomou, Silvia Salvatore, Ralf-Jürgen Dettmar, and Julia Becker Tjus, “Solving the Multimessenger Puzzle of the AGN-starburst Composite Galaxy NGC 1068,” Astrophys. J. 939, 43 (2022), arXiv:2207.00102 [astro-ph.HE] .
- Luis A. Anchordoqui, John F. Krizmanic, and Floyd W. Stecker, “High-Energy Neutrinos from NGC 1068,” PoS ICRC2021, 993 (2021), arXiv:2102.12409 [astro-ph.HE] .
- Francis Halzen, “High-Energy Neutrinos from the Cosmos,” Annalen Phys. 533, 2100309 (2021).
- V. M. Lipunov et al., “Optical Observations Reveal Strong Evidence for High Energy Neutrino Progenitor,” (2020), 10.3847/2041-8213/ab96ba, arXiv:2006.04918 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “IceCube Sensitivity for Low-Energy Neutrinos from Nearby Supernovae,” Astron. Astrophys. 535, A109 (2011a), [Erratum: Astron.Astrophys. 563, C1 (2014)], arXiv:1108.0171 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Constraining High-energy Neutrino Emission from Supernovae with IceCube,” Astrophys. J. Lett. 949, L12 (2023b), arXiv:2303.03316 [astro-ph.HE] .
- Rasha Abbasi et al. (IceCube), “Galactic Core-Collapse Supernovae at IceCube: “Fire Drill” Data Challenges and follow-up,” PoS ICRC2023, 1111 (2023c).
- David Freiherr Heereman von Zuydtwyck, HitSpooling: An Improvement for the Supernova Neutrino Detection System in IceCube, Ph.D. thesis, U. Brussels (main) (2015).
- Ken’ichiro Nakazato, Kohsuke Sumiyoshi, Hideyuki Suzuki, Tomonori Totani, Hideyuki Umeda, and Shoichi Yamada, “Supernova Neutrino Light Curves and Spectra for Various Progenitor Stars: From Core Collapse to Proto-neutron Star Cooling,” Astrophys. J. Suppl. 205, 2 (2013), arXiv:1210.6841 [astro-ph.HE] .
- Tomoya Takiwaki, Kei Kotake, and Thierry Foglizzo, “Insights into non-axisymmetric instabilities in three-dimensional rotating supernova models with neutrino and gravitational-wave signatures,” Mon. Not. Roy. Astron. Soc. 508, 966–985 (2021), arXiv:2107.02933 [astro-ph.HE] .
- Massimiliano Lincetto et al. (IceCube), “Searching for high-energy neutrinos from shock-interaction powered supernovae with the IceCube Neutrino Observatory,” PoS ICRC2023, 1105 (2023), arXiv:2308.01047 [astro-ph.HE] .
- K. Choi, Carsten Rott, and Yoshitaka Itow, “Impact of the dark matter velocity distribution on capture rates in the Sun,” JCAP 05, 049 (2014), arXiv:1312.0273 [astro-ph.HE] .
- Matthias Danninger and Carsten Rott, “Solar WIMPs unravelled: Experiments, astrophysical uncertainties, and interactive tools,” Phys. Dark Univ. 5-6, 35–44 (2014), arXiv:1509.08230 [astro-ph.HE] .
- V. Berezinsky and O. Kalashev, “High energy electromagnetic cascades in extragalactic space: physics and features,” Phys. Rev. D 94, 023007 (2016), arXiv:1603.03989 [astro-ph.HE] .
- Barbara Skrzypek, Marco Chianese, C. A. Argüelles, and Carlos Delgado Argüelles, “Multi-messenger high-energy signatures of decaying dark matter and the effect of background light,” JCAP 01, 037 (2023), arXiv:2205.03416 [astro-ph.HE] .
- Carlos A. Argüelles, Alejandro Diaz, Ali Kheirandish, Andrés Olivares-Del-Campo, Ibrahim Safa, and Aaron C. Vincent, “Dark matter annihilation to neutrinos,” Rev. Mod. Phys. 93, 035007 (2021), arXiv:1912.09486 [hep-ph] .
- Carlos A. Argüelles, Diyaselis Delgado, Avi Friedlander, Ali Kheirandish, Ibrahim Safa, Aaron C. Vincent, and Henry White, “Dark matter decay to neutrinos,” Phys. Rev. D 108, 123021 (2023a), arXiv:2210.01303 [hep-ph] .
- M. G. Aartsen et al. (IceCube), “Search for Neutrinos from Dark Matter Self-Annihilations in the center of the Milky Way with 3 years of IceCube/DeepCore,” Eur. Phys. J. C 77, 627 (2017e), arXiv:1705.08103 [hep-ex] .
- M. G. Aartsen et al. (IceCube), “Search for Dark Matter Annihilation in the Galactic Center with IceCube-79,” Eur. Phys. J. C 75, 492 (2015a), arXiv:1505.07259 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “All-flavour Search for Neutrinos from Dark Matter Annihilations in the Milky Way with IceCube/DeepCore,” Eur. Phys. J. C 76, 531 (2016), arXiv:1606.00209 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Search for dark matter from the Galactic halo with the IceCube Neutrino Telescope,” Phys. Rev. D 84, 022004 (2011b), arXiv:1101.3349 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “Multipole analysis of IceCube data to search for dark matter accumulated in the Galactic halo,” Eur. Phys. J. C 75, 20 (2015b), arXiv:1406.6868 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “IceCube Search for Dark Matter Annihilation in nearby Galaxies and Galaxy Clusters,” Phys. Rev. D 88, 122001 (2013b), arXiv:1307.3473 [astro-ph.HE] .
- M. Blennow, E. Fernandez-Martinez, A. Olivares-Del Campo, S. Pascoli, S. Rosauro-Alcaraz, and A. V. Titov, “Neutrino Portals to Dark Matter,” Eur. Phys. J. C 79, 555 (2019), arXiv:1903.00006 [hep-ph] .
- Deanna C. Hooper and Matteo Lucca, “Hints of dark matter-neutrino interactions in Lyman-α𝛼\alphaitalic_α data,” Phys. Rev. D 105, 103504 (2022), arXiv:2110.04024 [astro-ph.CO] .
- Carlos A. Argüelles, Ali Kheirandish, and Aaron C. Vincent, “Imaging Galactic Dark Matter with High-Energy Cosmic Neutrinos,” Phys. Rev. Lett. 119, 201801 (2017), arXiv:1703.00451 [hep-ph] .
- Kevin J. Kelly and Pedro A. N. Machado, “Multimessenger Astronomy and New Neutrino Physics,” JCAP 10, 048 (2018), arXiv:1808.02889 [hep-ph] .
- Francesc Ferrer, Gonzalo Herrera, and Alejandro Ibarra, “New constraints on the dark matter-neutrino and dark matter-photon scattering cross sections from TXS 0506+056,” JCAP 05, 057 (2023), arXiv:2209.06339 [hep-ph] .
- R. Abbasi et al. (IceCube), “Searches for connections between dark matter and high-energy neutrinos with IceCube,” JCAP 10, 003 (2023d), arXiv:2205.12950 [hep-ex] .
- Gonzalo Herrera and Kohta Murase, “Probing Light Dark Matter through Cosmic-Ray Cooling in Active Galactic Nuclei,” (2023), arXiv:2307.09460 [hep-ph] .
- M. G. Aartsen et al. (IceCube), “Search for dark matter annihilations in the Sun with the 79-string IceCube detector,” Phys. Rev. Lett. 110, 131302 (2013c), arXiv:1212.4097 [astro-ph.HE] .
- Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou, “The fate of hints: updated global analysis of three-flavor neutrino oscillations,” JHEP 09, 178 (2020), arXiv:2007.14792 [hep-ph] .
- Hirosi Ooguri and Cumrun Vafa, “Non-supersymmetric AdS and the Swampland,” Adv. Theor. Math. Phys. 21, 1787–1801 (2017), arXiv:1610.01533 [hep-th] .
- Eduardo Gonzalo, L. E. Ibáñez, and I. Valenzuela, “Swampland constraints on neutrino masses,” JHEP 02, 088 (2022), arXiv:2109.10961 [hep-th] .
- Cumrun Vafa, “Swamplandish Unification of the Dark Sector,” (2024), arXiv:2402.00981 [hep-ph] .
- J. W. F. Valle and M. Singer, “Lepton Number Violation With Quasi Dirac Neutrinos,” Phys. Rev. D 28, 540 (1983).
- Roland M. Crocker, Fulvio Melia, and Raymond R. Volkas, “Searching for long wavelength neutrino oscillations in the distorted neutrino spectrum of galactic supernova remnants,” Astrophys. J. Suppl. 141, 147–155 (2002), arXiv:astro-ph/0106090 .
- P. Keranen, J. Maalampi, M. Myyrylainen, and J. Riittinen, “Effects of sterile neutrinos on the ultrahigh-energy cosmic neutrino flux,” Phys. Lett. B 574, 162–168 (2003), arXiv:hep-ph/0307041 .
- John F. Beacom, Nicole F. Bell, Dan Hooper, John G. Learned, Sandip Pakvasa, and Thomas J. Weiler, “PseudoDirac neutrinos: A Challenge for neutrino telescopes,” Phys. Rev. Lett. 92, 011101 (2004), arXiv:hep-ph/0307151 .
- Arman Esmaili, “Pseudo-Dirac Neutrino Scenario: Cosmic Neutrinos at Neutrino Telescopes,” Phys. Rev. D 81, 013006 (2010), arXiv:0909.5410 [hep-ph] .
- Arman Esmaili and Yasaman Farzan, “Implications of the Pseudo-Dirac Scenario for Ultra High Energy Neutrinos from GRBs,” JCAP 12, 014 (2012), arXiv:1208.6012 [hep-ph] .
- Ian M. Shoemaker and Kohta Murase, “Probing BSM Neutrino Physics with Flavor and Spectral Distortions: Prospects for Future High-Energy Neutrino Telescopes,” Phys. Rev. D 93, 085004 (2016), arXiv:1512.07228 [astro-ph.HE] .
- Kiara Carloni, Ivan Martínez-Soler, Carlos A. Arguelles, K. S. Babu, and P. S. Bhupal Dev, “Probing pseudo-Dirac neutrinos with astrophysical sources at IceCube,” Phys. Rev. D 109, L051702 (2024), arXiv:2212.00737 [astro-ph.HE] .
- C. A. Argüelles, P. Fernández, I. Martínez-Soler, and M. Jin, “Measuring Oscillations with a Million Atmospheric Neutrinos,” Phys. Rev. X 13, 041055 (2023b), arXiv:2211.02666 [hep-ph] .
- Yutaka Hosotani, “Majorana Masses, Photon Gas Heating and Cosmological Constraints on Neutrinos,” Nucl. Phys. B 191, 411 (1981), [Erratum: Nucl.Phys.B 197, 546 (1982)].
- Palash B. Pal and Lincoln Wolfenstein, “Radiative Decays of Massive Neutrinos,” Phys. Rev. D 25, 766 (1982).
- Jose F. Nieves, “Two Photon Decays of Heavy Neutrinos,” Phys. Rev. D 28, 1664 (1983).
- John N. Bahcall, N. Cabibbo, and A. Yahil, “Are neutrinos stable particles?” Phys. Rev. Lett. 28, 316–318 (1972).
- Y. Chikashige, Rabindra N. Mohapatra, and R. D. Peccei, “Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum,” Phys. Rev. Lett. 45, 1926 (1980).
- Mauricio Bustamante, John F. Beacom, and Kohta Murase, “Testing decay of astrophysical neutrinos with incomplete information,” Phys. Rev. D 95, 063013 (2017), arXiv:1610.02096 [astro-ph.HE] .
- Ningqiang Song, Shirley Weishi Li, Carlos A. Argüelles, Mauricio Bustamante, and Aaron C. Vincent, “The Future of High-Energy Astrophysical Neutrino Flavor Measurements,” JCAP 04, 054 (2021), arXiv:2012.12893 [hep-ph] .
- Asli Abdullahi and Peter B. Denton, “Visible Decay of Astrophysical Neutrinos at IceCube,” Phys. Rev. D 102, 023018 (2020), arXiv:2005.07200 [hep-ph] .
- Qinrui Liu, Damiano F. G. Fiorillo, Carlos A. Argüelles, Mauricio Bustamante, Ningqiang Song, and Aaron C. Vincent, “Identifying Energy-Dependent Flavor Transitions in High-Energy Astrophysical Neutrino Measurements,” (2023), arXiv:2312.07649 [astro-ph.HE] .
- M. G. Aartsen et al. (IceCube), “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube,” Astrophys. J. 809, 98 (2015c), arXiv:1507.03991 [astro-ph.HE] .
- Vedran Brdar, Joachim Kopp, and Xiao-Ping Wang, “Sterile Neutrinos and Flavor Ratios in IceCube,” JCAP 01, 026 (2017), arXiv:1611.04598 [hep-ph] .
- Carlos A. Argüelles, Kareem Farrag, Teppei Katori, Rishabh Khandelwal, Shivesh Mandalia, and Jordi Salvado, “Sterile neutrinos in astrophysical neutrino flavor,” JCAP 02, 015 (2020a), arXiv:1909.05341 [hep-ph] .
- Stephen Parke and Mark Ross-Lonergan, “Unitarity and the three flavor neutrino mixing matrix,” Phys. Rev. D 93, 113009 (2016), arXiv:1508.05095 [hep-ph] .
- Sebastian A. R. Ellis, Kevin J. Kelly, and Shirley Weishi Li, “Current and Future Neutrino Oscillation Constraints on Leptonic Unitarity,” JHEP 12, 068 (2020), arXiv:2008.01088 [hep-ph] .
- C. Athanassopoulos et al. (LSND), “Evidence for anti-muon-neutrino —>>> anti-electron-neutrino oscillations from the LSND experiment at LAMPF,” Phys. Rev. Lett. 77, 3082–3085 (1996), arXiv:nucl-ex/9605003 .
- A. A. Aguilar-Arevalo et al. (MiniBooNE), “Improved Search for ν¯μ→ν¯e→subscript¯𝜈𝜇subscript¯𝜈𝑒\bar{\nu}_{\mu}\rightarrow\bar{\nu}_{e}over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT → over¯ start_ARG italic_ν end_ARG start_POSTSUBSCRIPT italic_e end_POSTSUBSCRIPT Oscillations in the MiniBooNE Experiment,” Phys. Rev. Lett. 110, 161801 (2013), arXiv:1303.2588 [hep-ex] .
- J. N. Abdurashitov et al. (SAGE), “Measurement of the response of the Russian-American gallium experiment to neutrinos from a Cr-51 source,” Phys. Rev. C 59, 2246–2263 (1999), arXiv:hep-ph/9803418 .
- W. Hampel et al. (GALLEX), “Final results of the Cr-51 neutrino source experiments in GALLEX,” Phys. Lett. B 420, 114–126 (1998).
- V. V. Barinov et al., “Results from the Baksan Experiment on Sterile Transitions (BEST),” Phys. Rev. Lett. 128, 232501 (2022), arXiv:2109.11482 [nucl-ex] .
- A. P. Serebrov, R. M. Samoilov, M. E. Chaikovskii, and O. M. Zherebtsov, “Result of the Neutrino-4 Experiment and the Cosmological Constraints on the Sterile Neutrino (Brief Review),” JETP Lett. 116, 669–682 (2022), arXiv:2203.09401 [hep-ph] .
- C. A. Argüelles, I. Esteban, M. Hostert, Kevin J. Kelly, J. Kopp, P. A. N. Machado, I. Martinez-Soler, and Y. F. Perez-Gonzalez, “MicroBooNE and the ν𝜈\nuitalic_νe Interpretation of the MiniBooNE Low-Energy Excess,” Phys. Rev. Lett. 128, 241802 (2022), arXiv:2111.10359 [hep-ph] .
- P. Adamson et al. (MINOS+), “Search for sterile neutrinos in MINOS and MINOS+ using a two-detector fit,” Phys. Rev. Lett. 122, 091803 (2019), arXiv:1710.06488 [hep-ex] .
- Miguel Montero, Cumrun Vafa, and Irene Valenzuela, “The dark dimension and the Swampland,” JHEP 02, 022 (2023), arXiv:2205.12293 [hep-th] .
- Carlos A. Argüelles, Mauricio Bustamante, Ali Kheirandish, Sergio Palomares-Ruiz, Jordi Salvado, and Aaron C. Vincent, “Fundamental physics with high-energy cosmic neutrinos today and in the future,” PoS ICRC2019, 849 (2020b), arXiv:1907.08690 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Search for quantum gravity using astrophysical neutrino flavour with IceCube,” Nature Phys. 18, 1287–1292 (2022e), arXiv:2111.04654 [hep-ex] .
- M. G. Aartsen et al. (IceCube), “Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube,” Nature Phys. 14, 961–966 (2018c), arXiv:1709.03434 [hep-ex] .
- John G. Learned and Sandip Pakvasa, “Detecting tau-neutrino oscillations at PeV energies,” Astropart. Phys. 3, 267–274 (1995), arXiv:hep-ph/9405296 .
- Carlos A. Argüelles, Teppei Katori, and Jordi Salvado, “New Physics in Astrophysical Neutrino Flavor,” Phys. Rev. Lett. 115, 161303 (2015a), arXiv:1506.02043 [hep-ph] .
- Mauricio Bustamante, John F. Beacom, and Walter Winter, “Theoretically palatable flavor combinations of astrophysical neutrinos,” Phys. Rev. Lett. 115, 161302 (2015), arXiv:1506.02645 [astro-ph.HE] .
- Don Colladay and V. Alan Kostelecky, “Lorentz violating extension of the standard model,” Phys. Rev. D 58, 116002 (1998), arXiv:hep-ph/9809521 .
- P. F. de Salas, R. A. Lineros, and M. Tórtola, “Neutrino propagation in the galactic dark matter halo,” Phys. Rev. D 94, 123001 (2016), arXiv:1601.05798 [astro-ph.HE] .
- Francesco Capozzi, Ian M. Shoemaker, and Luca Vecchi, “Neutrino Oscillations in Dark Backgrounds,” JCAP 07, 004 (2018), arXiv:1804.05117 [hep-ph] .
- Yasaman Farzan and Sergio Palomares-Ruiz, “Flavor of cosmic neutrinos preserved by ultralight dark matter,” Phys. Rev. D 99, 051702 (2019), arXiv:1810.00892 [hep-ph] .
- Mauricio Bustamante and Sanjib Kumar Agarwalla, “Universe’s Worth of Electrons to Probe Long-Range Interactions of High-Energy Astrophysical Neutrinos,” Phys. Rev. Lett. 122, 061103 (2019), arXiv:1808.02042 [astro-ph.HE] .
- Carlos A. Argüelles, Kareem Farrag, and Teppei Katori, “Ultra-light Dark Matter Limits from Astrophysical Neutrino Flavor,” (2024), arXiv:2404.10926 [hep-ph] .
- P. S. Bhupal Dev, Sudip Jana, and Yago Porto, “Flavor Matters, but Matter Flavors: Matter Effects on Flavor Composition of Astrophysical Neutrinos,” (2023), arXiv:2312.17315 [hep-ph] .
- M. C. Gonzalez-Garcia, Michele Maltoni, Ivan Martinez-Soler, and Ningqiang Song, “Non-standard neutrino interactions in the Earth and the flavor of astrophysical neutrinos,” Astropart. Phys. 84, 15–22 (2016), arXiv:1605.08055 [hep-ph] .
- R. Abbasi et al. (IceCube), “A search for an eV-scale sterile neutrino using improved high-energy νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT event reconstruction in IceCube,” (2024a), arXiv:2405.08070 [hep-ex] .
- R. Abbasi et al. (IceCube), “Methods and stability tests associated with the sterile neutrino search using improved high-energy νμsubscript𝜈𝜇\nu_{\mu}italic_ν start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT event reconstruction in IceCube,” (2024b), arXiv:2405.08077 [hep-ex] .
- M. G. Aartsen et al. (IceCube), “Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube,” Nature Phys. 14, 961–966 (2018d), arXiv:1709.03434 [hep-ex] .
- Pilar Coloma, Jacobo Lopez-Pavon, Ivan Martinez-Soler, and Hiroshi Nunokawa, “Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore,” Eur. Phys. J. C 78, 614 (2018), arXiv:1803.04438 [hep-ph] .
- Thomas Stuttard and Mikkel Jensen, “Neutrino decoherence from quantum gravitational stochastic perturbations,” Phys. Rev. D 102, 115003 (2020), arXiv:2007.00068 [hep-ph] .
- B. J. P. Jones and O. H. Seidel, “Collapse of Neutrino Wave Functions under Penrose Gravitational Reduction,” (2024), arXiv:2405.03954 [hep-ph] .
- R. Abbasi et al. (IceCube), “Searching for Decoherence from Quantum Gravity at the IceCube South Pole Neutrino Observatory,” (2023e), arXiv:2308.00105 [hep-ex] .
- Jordi Salvado, Olga Mena, Sergio Palomares-Ruiz, and Nuria Rius, “Non-standard interactions with high-energy atmospheric neutrinos at IceCube,” JHEP 01, 141 (2017), arXiv:1609.03450 [hep-ph] .
- R. Abbasi et al. (IceCube), “Strong Constraints on Neutrino Nonstandard Interactions from TeV-Scale νusubscript𝜈𝑢\nu_{u}italic_ν start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT Disappearance at IceCube,” Phys. Rev. Lett. 129, 011804 (2022f), arXiv:2201.03566 [hep-ex] .
- Martin M. Block and Francis Halzen, “Experimental Confirmation that the Proton is Asymptotically a Black Disk,” Phys. Rev. Lett. 107, 212002 (2011), arXiv:1109.2041 [hep-ph] .
- Carlos A. Argüelles, Francis Halzen, Logan Wille, Mike Kroll, and Mary Hall Reno, “High-energy behavior of photon, neutrino, and proton cross sections,” Phys. Rev. D 92, 074040 (2015b), arXiv:1504.06639 [hep-ph] .
- M. G. Aartsen et al. (IceCube), “Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption,” Nature 551, 596–600 (2017f), arXiv:1711.08119 [hep-ex] .
- Mauricio Bustamante and Amy Connolly, “Extracting the Energy-Dependent Neutrino-Nucleon Cross Section above 10 TeV Using IceCube Showers,” Phys. Rev. Lett. 122, 041101 (2019), arXiv:1711.11043 [astro-ph.HE] .
- R. Abbasi et al. (IceCube), “Measurement of the high-energy all-flavor neutrino-nucleon cross section with IceCube,” (2020), 10.1103/PhysRevD.104.022001, arXiv:2011.03560 [hep-ex] .
- Alfonso Garcia Soto, Diksha Garg, Mary Hall Reno, and Carlos A. Argüelles, “Probing quantum gravity with elastic interactions of ultrahigh-energy neutrinos,” Phys. Rev. D 107, 033009 (2023), arXiv:2209.06282 [hep-ph] .
- Jaime Alvarez-Muniz, Jonathan L. Feng, Francis Halzen, Tao Han, and Dan Hooper, “Detecting microscopic black holes with neutrino telescopes,” Phys. Rev. D 65, 124015 (2002), arXiv:hep-ph/0202081 .
- Ujjal Kumar Dey, Deepak Kar, Manimala Mitra, Michael Spannowsky, and Aaron C. Vincent, “Searching for Leptoquarks at IceCube and the LHC,” Phys. Rev. D 98, 035014 (2018), arXiv:1709.02009 [hep-ph] .
- K. S. Babu, P. S. Dev, Sudip Jana, and Yicong Sui, “Zee-Burst: A New Probe of Neutrino Nonstandard Interactions at IceCube,” Phys. Rev. Lett. 124, 041805 (2020), arXiv:1908.02779 [hep-ph] .
- Alfonso Garcia Soto, Pavel Zhelnin, Ibrahim Safa, and Carlos A. Argüelles, “Tau Appearance from High-Energy Neutrino Interactions,” Phys. Rev. Lett. 128, 171101 (2022), arXiv:2112.06937 [hep-ph] .
- R. Abbasi et al., “A Convolutional Neural Network based Cascade Reconstruction for the IceCube Neutrino Observatory,” JINST 16, P07041 (2021b), arXiv:2101.11589 [hep-ex] .
- I. Kharuk, G. Safronov, A. Matseiko, and A. Leonov, “Machine learning in Baikal-GVD experiment,” PoS ICRC2023, 1077 (2023).
- S. Reck, D. Guderian, G. Vermariën, and A. Domi (KM3NeT), “Graph neural networks for reconstruction and classification in KM3NeT,” JINST 16, C10011 (2021), arXiv:2107.13375 [astro-ph.IM] .
- R. Abbasi et al. (IceCube), “Graph Neural Networks for low-energy event classification & reconstruction in IceCube,” JINST 17, P11003 (2022g), arXiv:2209.03042 [hep-ex] .
- Felix J. Yu, Jeffrey Lazar, and Carlos A. Argüelles, “Trigger-level event reconstruction for neutrino telescopes using sparse submanifold convolutional neural networks,” Phys. Rev. D 108, 063017 (2023), arXiv:2303.08812 [hep-ex] .
- Miaochen Jin, Yushi Hu, and Carlos A. Argüelles, “Two Watts is All You Need: Enabling In-Detector Real-Time Machine Learning for Neutrino Telescopes Via Edge Computing,” (2023), arXiv:2311.04983 [hep-ex] .
- Philipp Eller (IceCube), “Public Kaggle Competition ”IceCube – Neutrinos in Deep Ice”,” in 38th International Cosmic Ray Conference (2023) arXiv:2307.15289 [astro-ph.HE] .
- Jeffrey Lazar, Stephan Meighen-Berger, Christian Haack, David Kim, Santiago Giner, and Carlos A. Argüelles, “Prometheus: An Open-Source Neutrino Telescope Simulation,” (2023), arXiv:2304.14526 [hep-ex] .
- Jeffrey Lazar, Santiago Giner Olavarrieta, Giancarlo Gatti, Carlos A. Argüelles, and Mikel Sanz, “New Pathways in Neutrino Physics via Quantum-Encoded Data Analysis,” (2024), arXiv:2402.19306 [hep-ex] .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.