Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Scaling Law in Stellar Light Curves (2405.17156v2)

Published 27 May 2024 in astro-ph.IM, astro-ph.SR, and cs.LG

Abstract: Analyzing time series of fluxes from stars, known as stellar light curves, can reveal valuable information about stellar properties. However, most current methods rely on extracting summary statistics, and studies using deep learning have been limited to supervised approaches. In this research, we investigate the scaling law properties that emerge when learning from astronomical time series data using self-supervised techniques. By employing the GPT-2 architecture, we show the learned representation improves as the number of parameters increases from $104$ to $109$, with no signs of performance plateauing. We demonstrate that a self-supervised Transformer model achieves 3-10 times the sample efficiency compared to the state-of-the-art supervised learning model when inferring the surface gravity of stars as a downstream task. Our research lays the groundwork for analyzing stellar light curves by examining them through large-scale auto-regressive generative models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Asteroseismology. Springer, Netherlands, 2010. ISBN 978-1-4020-5178-4. doi: 10.1007/978-1-4020-5803-5.
  2. Qwen technical report, 2023a.
  3. Sequential modeling enables scalable learning for large vision models, 2023b.
  4. An observational correlation between stellar brightness variations and surface gravity. Nature, 500(7463):427–430, aug 2013. doi: 10.1038/nature12419. URL https://doi.org/10.1038%2Fnature12419.
  5. The zwicky transient facility: System overview, performance, and first results. Publications of the Astronomical Society of the Pacific, 131(995):018002, dec 2018. doi: 10.1088/1538-3873/aaecbe. URL https://doi.org/10.1088%2F1538-3873%2Faaecbe.
  6. The gaia-kepler stellar properties catalog. i. homogeneous fundamental properties for 186,301 kepler stars, 2020.
  7. Data-driven Derivation of Stellar Properties from Photometric Time Series Data Using Convolutional Neural Networks. The Astrophysical Journal, 933(2):241, July 2022. doi: 10.3847/1538-4357/ac7563.
  8. Language models are few-shot learners, 2020.
  9. Generative pretraining from pixels. In International conference on machine learning, pp.  1691–1703. PMLR, 2020.
  10. Astromer: A transformer-based embedding for the representation of light curves. Astronomy & Astrophysics, 670:A54, February 2023. ISSN 1432-0746. doi: 10.1051/0004-6361/202243928. URL http://dx.doi.org/10.1051/0004-6361/202243928.
  11. Preparation of Kepler light curves for asteroseismic analyses. Monthly Notices of the Royal Astronomical Society: Letters, 414(1):L6–L10, 06 2011. ISSN 1745-3925. doi: 10.1111/j.1745-3933.2011.01042.x. URL https://doi.org/10.1111/j.1745-3933.2011.01042.x.
  12. Rubin observatory lsst transients and variable stars roadmap. Publications of the Astronomical Society of the Pacific, 135(1052):105002, nov 2023. doi: 10.1088/1538-3873/acdb9a. URL https://dx.doi.org/10.1088/1538-3873/acdb9a.
  13. Scaling laws for autoregressive generative modeling, 2020.
  14. Training compute-optimal large language models, 2022.
  15. Deep learning classification in asteroseismology. Monthly Notices of the Royal Astronomical Society, 469(4):4578–4583, May 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx1174. URL http://dx.doi.org/10.1093/mnras/stx1174.
  16. Huber, P. J. Robust Estimation of a Location Parameter. The Annals of Mathematical Statistics, 35(1):73 – 101, 1964. doi: 10.1214/aoms/1177703732. URL https://doi.org/10.1214/aoms/1177703732.
  17. LSST: From Science Drivers to Reference Design and Anticipated Data Products. The Astrophysical Journal, 873(2):111, March 2019. doi: 10.3847/1538-4357/ab042c.
  18. Scaling laws for neural language models, 2020.
  19. Adam: A method for stochastic optimization, 2017.
  20. Kepler eclipsing binary stars. vii. the catalog of eclipsing binaries found in the entire kepler data set. The Astronomical Journal, 151(3):68, feb 2016. doi: 10.3847/0004-6256/151/3/68. URL https://dx.doi.org/10.3847/0004-6256/151/3/68.
  21. Koch, D. G. et al. Kepler Mission Design, Realized Photometric Performance, and Early Science. The Astrophysical Journals Letter, 713(2):L79–L86, April 2010. doi: 10.1088/2041-8205/713/2/L79.
  22. The sitian project, 2020.
  23. Decoupled weight decay regularization, 2019.
  24. Revised stellar properties of kepler targets for the q1-17 (DR25) transit detection run. The Astrophysical Journal Supplement Series, 229(2):30, mar 2017. doi: 10.3847/1538-4365/229/2/30. URL https://doi.org/10.3847/1538-4365/229/2/30.
  25. Umap: Uniform manifold approximation and projection for dimension reduction, 2020.
  26. Astroconformer: The prospects of analysing stellar light curves with transformer-based deep learning models. Monthly Notices of the Royal Astronomical Society, 528(4):5890–5903, January 2024. ISSN 1365-2966. doi: 10.1093/mnras/stae068. URL http://dx.doi.org/10.1093/mnras/stae068.
  27. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.
  28. Transiting Exoplanet Survey Satellite (TESS). In Oschmann, Jacobus M., J., Clampin, M., Fazio, G. G., and MacEwen, H. A. (eds.), Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, volume 9143 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, pp.  914320, August 2014. doi: 10.1117/12.2063489.
  29. The Swan: Data-driven Inference of Stellar Surface Gravities for Cool Stars from Photometric Light Curves. The Astronomical Journal, 161(4):170, April 2021. doi: 10.3847/1538-3881/abdf4c.
  30. Astropt: Scaling large observation models for astronomy, 2024.
  31. TESS asteroseismology of the kepler red giants. Monthly Notices of the Royal Astronomical Society, 512(2):1677–1686, feb 2022. doi: 10.1093/mnras/stac414. URL https://doi.org/10.1093%2Fmnras%2Fstac414.
  32. Roformer: Enhanced transformer with rotary position embedding, 2023.
  33. Llama 2: Open foundation and fine-tuned chat models, 2023.
  34. Attention is all you need, 2023.
  35. Scaling laws for galaxy images, 2024.
  36. The optical flare and afterglow light curve of grb 050904 at redshift z= 6.29. The Astrophysical Journal, 636(2):L69, 2006.
  37. Asteroseismology of 16,000 kepler red giants: Global oscillation parameters, masses, and radii. The Astrophysical Journal Supplement Series, 236(2):42, Jun 2018. ISSN 1538-4365. doi: 10.3847/1538-4365/aaaf74. URL http://dx.doi.org/10.3847/1538-4365/aaaf74.
  38. Asteroseismology of luminous red giants with kepler i: long-period variables with radial and non-radial modes. Monthly Notices of the Royal Astronomical Society, 493(1):1388–1403, jan 2020. doi: 10.1093/mnras/staa300. URL https://doi.org/10.1093%2Fmnras%2Fstaa300.
  39. Root mean square layer normalization, 2019.

Summary

We haven't generated a summary for this paper yet.

Reddit Logo Streamline Icon: https://streamlinehq.com

Reddit