Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Astroconformer: Inferring Surface Gravity of Stars from Stellar Light Curves with Transformer (2207.02787v1)

Published 6 Jul 2022 in astro-ph.SR, astro-ph.EP, astro-ph.IM, and cs.LG

Abstract: We introduce Astroconformer, a Transformer-based model to analyze stellar light curves from the Kepler mission. We demonstrate that Astrconformer can robustly infer the stellar surface gravity as a supervised task. Importantly, as Transformer captures long-range information in the time series, it outperforms the state-of-the-art data-driven method in the field, and the critical role of self-attention is proved through ablation experiments. Furthermore, the attention map from Astroconformer exemplifies the long-range correlation information learned by the model, leading to a more interpretable deep learning approach for asteroseismology. Besides data from Kepler, we also show that the method can generalize to sparse cadence light curves from the Rubin Observatory, paving the way for the new era of asteroseismology, harnessing information from long-cadence ground-based observations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.