Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Astroconformer: The Prospects of Analyzing Stellar Light Curves with Transformer-Based Deep Learning Models (2309.16316v2)

Published 28 Sep 2023 in astro-ph.SR, astro-ph.EP, astro-ph.IM, and cs.LG

Abstract: Stellar light curves contain valuable information about oscillations and granulation, offering insights into stars' internal structures and evolutionary states. Traditional asteroseismic techniques, primarily focused on power spectral analysis, often overlook the crucial phase information in these light curves. Addressing this gap, recent machine learning applications, particularly those using Convolutional Neural Networks (CNNs), have made strides in inferring stellar properties from light curves. However, CNNs are limited by their localized feature extraction capabilities. In response, we introduce $\textit{Astroconformer}$, a Transformer-based deep learning framework, specifically designed to capture long-range dependencies in stellar light curves. Our empirical analysis centers on estimating surface gravity ($\log g$), using a dataset derived from single-quarter Kepler light curves with $\log g$ values ranging from 0.2 to 4.4. $\textit{Astroconformer}$ demonstrates superior performance, achieving a root-mean-square-error (RMSE) of 0.017 dex at $\log g\approx3$ in data-rich regimes and up to 0.1 dex in sparser areas. This performance surpasses both K-nearest neighbor models and advanced CNNs. Ablation studies highlight the influence of receptive field size on model effectiveness, with larger fields correlating to improved results. $\textit{Astroconformer}$ also excels in extracting $\nu_{\max}$ with high precision. It achieves less than 2% relative median absolute error for 90-day red giant light curves. Notably, the error remains under 3% for 30-day light curves, whose oscillations are undetectable by a conventional pipeline in 30% cases. Furthermore, the attention mechanisms in $\textit{Astroconformer}$ align closely with the characteristics of stellar oscillations and granulation observed in light curves.

Citations (4)

Summary

We haven't generated a summary for this paper yet.