Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning and LLM-based Methods Applied to Stellar Lightcurve Classification (2404.10757v1)

Published 16 Apr 2024 in astro-ph.IM, astro-ph.SR, cs.CL, and cs.LG

Abstract: Light curves serve as a valuable source of information on stellar formation and evolution. With the rapid advancement of machine learning techniques, it can be effectively processed to extract astronomical patterns and information. In this study, we present a comprehensive evaluation of deep-learning and LLM based models for the automatic classification of variable star light curves, based on large datasets from the Kepler and K2 missions. Special emphasis is placed on Cepheids, RR Lyrae, and eclipsing binaries, examining the influence of observational cadence and phase distribution on classification precision. Employing AutoDL optimization, we achieve striking performance with the 1D-Convolution+BiLSTM architecture and the Swin Transformer, hitting accuracies of 94\% and 99\% correspondingly, with the latter demonstrating a notable 83\% accuracy in discerning the elusive Type II Cepheids-comprising merely 0.02\% of the total dataset.We unveil StarWhisper LightCurve (LC), an innovative Series comprising three LLM-based models: LLM, multimodal LLM (MLLM), and Large Audio LLM (LALM). Each model is fine-tuned with strategic prompt engineering and customized training methods to explore the emergent abilities of these models for astronomical data. Remarkably, StarWhisper LC Series exhibit high accuracies around 90\%, significantly reducing the need for explicit feature engineering, thereby paving the way for streamlined parallel data processing and the progression of multifaceted multimodal models in astronomical applications. The study furnishes two detailed catalogs illustrating the impacts of phase and sampling intervals on deep learning classification accuracy, showing that a substantial decrease of up to 14\% in observation duration and 21\% in sampling points can be realized without compromising accuracy by more than 10\%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. “KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE” In The Astronomical Journal 141.3 The American Astronomical Society, 2011, pp. 83 DOI: 10.1088/0004-6256/141/3/83
  2. “KEPLER ECLIPSING BINARY STARS. II. 2165 ECLIPSING BINARIES IN THE SECOND DATA RELEASE” In The Astronomical Journal 142.5 The American Astronomical Society, 2011, pp. 160 DOI: 10.1088/0004-6256/142/5/160
  3. “KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING” In The Astronomical Journal 143.5 The American Astronomical Society, 2012, pp. 123 DOI: 10.1088/0004-6256/143/5/123
  4. “KEPLER ECLIPSING BINARY STARS. IV. PRECISE ECLIPSE TIMES FOR CLOSE BINARIES AND IDENTIFICATION OF CANDIDATE THREE-BODY SYSTEMS” In The Astronomical Journal 147.2 The American Astronomical Society, 2014, pp. 45 DOI: 10.1088/0004-6256/147/2/45
  5. “Kepler Eclipsing Binary Stars. V. Identification of 31 Candidate Eclipsing Binaries in the K2 Engineering Dataset” In Publications of the Astronomical Society of the Pacific 126.944 IOP Publishing, 2014, pp. 914 DOI: 10.1086/678953
  6. “Kepler Eclipsing Binary Stars. VI. Identification of Eclipsing Binaries in the K2 Campaign 0 Data-set” arXiv, 2015 DOI: 10.48550/arXiv.1503.01829
  7. “KEPLER ECLIPSING BINARY STARS. VII. THE CATALOG OF ECLIPSING BINARIES FOUND IN THE ENTIRE KEPLER DATA SET” In The Astronomical Journal 151.3 The American Astronomical Society, 2016, pp. 68 DOI: 10.3847/0004-6256/151/3/68
  8. “KEPLER ECLIPSING BINARY STARS. VIII. IDENTIFICATION OF FALSE POSITIVE ECLIPSING BINARIES AND RE-EXTRACTION OF NEW LIGHT CURVES” In The Astronomical Journal 151.4 The American Astronomical Society, 2016, pp. 101 DOI: 10.3847/0004-6256/151/4/101
  9. “Efficient Scheduling of Astronomical Observations - Application to the CARMENES Radial-Velocity Survey” In Astronomy & Astrophysics 604 EDP Sciences, 2017, pp. A87 DOI: 10.1051/0004-6361/201628577
  10. Eric S Saunders “Optimal Observing of Astronomical Time Series Using Autonomous Agents”, 2007
  11. “Transfer Learning Applied to Stellar Light Curve Classification” arXiv, 2023 arXiv:2305.13745 [astro-ph]
  12. Eric C. Bellm “The Zwicky Transient Facility” arXiv, 2014 DOI: 10.48550/arXiv.1410.8185
  13. “Machine Learning for the Zwicky Transient Facility” In Publications of the Astronomical Society of the Pacific 131.997, 2019, pp. 038002 DOI: 10.1088/1538-3873/aaf3fa
  14. “The SiTian Project” In Anais da Academia Brasileira de Ciências 93.suppl 1, 2021, pp. e20200628 DOI: 10.1590/0001-3765202120200628
  15. Yann LeCun, Yoshua Bengio and Geoffrey Hinton “Deep Learning” In Nature 521.7553, 2015, pp. 436–444 DOI: 10.1038/nature14539
  16. Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton “ImageNet Classification with Deep Convolutional Neural Networks” In Advances in Neural Information Processing Systems 25 Curran Associates, Inc., 2012
  17. Zachary C. Lipton, John Berkowitz and Charles Elkan “A Critical Review of Recurrent Neural Networks for Sequence Learning” arXiv, 2015 DOI: 10.48550/arXiv.1506.00019
  18. “Deep Residual Learning for Image Recognition” arXiv, 2015 DOI: 10.48550/arXiv.1512.03385
  19. “Attention Is All You Need” arXiv, 2017 DOI: 10.48550/arXiv.1706.03762
  20. “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding” In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) Minneapolis, Minnesota: Association for Computational Linguistics, 2019, pp. 4171–4186 DOI: 10.18653/v1/N19-1423
  21. “Improving Language Understanding by Generative Pre-Training”, 2018
  22. “Language Models Are Unsupervised Multitask Learners”, 2019
  23. “Language Models Are Few-Shot Learners” arXiv, 2020 DOI: 10.48550/arXiv.2005.14165
  24. Jeffrey L. Elman “Finding Structure in Time” In Cognitive Science 14.2, 1990, pp. 179–211 DOI: 10.1207/s15516709cog1402˙1
  25. “Long Short-Term Memory” In Neural Computation 9.8, 1997, pp. 1735–1780 DOI: 10.1162/neco.1997.9.8.1735
  26. “On the Properties of Neural Machine Translation: Encoder-Decoder Approaches” arXiv, 2014 DOI: 10.48550/arXiv.1409.1259
  27. “Backpropagation Applied to Handwritten Zip Code Recognition” In Neural Computation 1.4, 1989, pp. 541–551 DOI: 10.1162/neco.1989.1.4.541
  28. Mingxing Tan and Quoc V. Le “EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks” arXiv, 2020 arXiv:1905.11946 [cs, stat]
  29. Mingxing Tan and Quoc V. Le “EfficientNetV2: Smaller Models and Faster Training” arXiv, 2021 DOI: 10.48550/arXiv.2104.00298
  30. “Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows” arXiv, 2021 arXiv:2103.14030 [cs]
  31. “Swin Transformer V2: Scaling Up Capacity and Resolution” arXiv, 2022 DOI: 10.48550/arXiv.2111.09883
  32. “One Fits All:Power General Time Series Analysis by Pretrained LM”, 2023 arXiv:2302.11939 [cs.LG]
  33. “Multimodal Transformer for Unaligned Multimodal Language Sequences”, 2019 arXiv:1906.00295 [cs.CL]
  34. Chao-Han Huck Yang, Yun-Yun Tsai and Pin-Yu Chen “Voice2Series: Reprogramming Acoustic Models for Time Series Classification”, 2022 arXiv:2106.09296 [cs.LG]
  35. “Kepler Planet-Detection Mission: Introduction and First Results” In Science (New York, N.Y.) 327.5968, 2010, pp. 977–980 DOI: 10.1126/science.1185402
  36. Jeffrey E.Van Cleve and Douglas A. Caldwell “Kepler Instrument Handbook”, 2016
  37. “The Flare Catalog and the Flare Activity in the Kepler Mission” In The Astrophysical Journal Supplement Series 241.2, 2019, pp. 29 DOI: 10.3847/1538-4365/ab0d28
  38. “Stellar Activity Cycles as Revealed by Long-Term Beat-like Patterns from Light Curves of Kepler” In Research in Astronomy and Astrophysics 21.6, 2021, pp. 142 DOI: 10.1088/1674-4527/21/6/142
  39. Peter Kokol, Marko Kokol and Sašo Zagoranski “Machine Learning on Small Size Samples: A Synthetic Knowledge Synthesis” In Science Progress 105.1 SAGE Publications Ltd, 2022, pp. 00368504211029777 DOI: 10.1177/00368504211029777
  40. “Statistical Learning from Biased Training Samples” In arXiv e-prints, 2019, pp. arXiv:1906.12304 DOI: 10.48550/arXiv.1906.12304
  41. Hidetaka Taniguchi, Hiroshi Sato and Tomohiro Shirakawa “A Machine Learning Model with Human Cognitive Biases Capable of Learning from Small and Biased Datasets” In Scientific Reports 8.1 Nature Publishing Group, 2018, pp. 7397 DOI: 10.1038/s41598-018-25679-z
  42. “Combined General Catalogue of Variable Stars”, 1998
  43. “The List of Errors in the GCVS, 4th Edition. I. Volumes I-III” In Bulletin d’Information du Centre de Donnees Stellaires 45, 1994, pp. 19
  44. “VizieR Online Data Catalog: GCVS, Vol. V.: Extragalactic Variable Stars (Artyukhina+ 1996)” In VizieR Online Data Catalog, 1996, pp. II/205
  45. “The 84th Name-List of Variable Stars. Globular Clusters (Third Part) and Novae” In Peremennye Zvezdy 41, 2021, pp. 7 DOI: 10.24412/2221-0474-41-39-58
  46. “Gaia Data Release 2 - Validating the Classification of RR Lyrae and Cepheid Variables with the Kepler and K2 Missions” In Astronomy & Astrophysics 620 EDP Sciences, 2018, pp. A127 DOI: 10.1051/0004-6361/201833514
  47. “RESULTS OF A SEARCH FOR γ𝛾\gammaitalic_γ DOR AND δ𝛿\deltaitalic_δ SCT STARS WITH THE KEPLER SPACECRAFT” In The Astronomical Journal 149.2 The American Astronomical Society, 2015, pp. 68 DOI: 10.1088/0004-6256/149/2/68
  48. L A Balona “Gaia Luminosities of Pulsating A-F Stars in the Kepler Field” In Monthly Notices of the Royal Astronomical Society 479.1, 2018, pp. 183–191 DOI: 10.1093/mnras/sty1511
  49. N.R. Lomb “Least-Squares Frequency Analysis of Unequally Spaced Data” In Astrophysics and Space Science 39.2, 1976, pp. 447–462 DOI: 10.1007/BF00648343
  50. J.D. Scargle “Studies in Astronomical Time Series Analysis. II - Statistical Aspects of Spectral Analysis of Unevenly Spaced Data” In The Astrophysical Journal 263, 1982, pp. 835 DOI: 10.1086/160554
  51. Jacob T. VanderPlas “Understanding the Lomb-Scargle Periodogram” In The Astrophysical Journal Supplement Series 236.1, 2018, pp. 16 DOI: 10.3847/1538-4365/aab766
  52. Yoon Kim “Convolutional Neural Networks for Sentence Classification” arXiv, 2014 DOI: 10.48550/arXiv.1408.5882
  53. “Bidirectional Recurrent Neural Networks” In Signal Processing, IEEE Transactions on 45, 1997, pp. 2673–2681 DOI: 10.1109/78.650093
  54. “Distinguishing a Planetary Transit from False Positives: A Transformer-based Classification for Planetary Transit Signals” In Monthly Notices of the Royal Astronomical Society, 2023, pp. stad1173 DOI: 10.1093/mnras/stad1173
  55. “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling” arXiv, 2014 arXiv:1412.3555 [cs]
  56. “LightGBM: A Highly Efficient Gradient Boosting Decision Tree”, 2017
  57. Nikita Kitaev, Lukasz Kaiser and Anselm Levskaya “Reformer: The Efficient Transformer” In International Conference on Learning Representations, 2019
  58. “PYRAFORMER: LOW-COMPLEXITY PYRAMIDAL AT- TENTION FOR LONG-RANGE TIME SERIES MODELING AND FORECASTING”, 2022
  59. “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale” arXiv, 2021 DOI: 10.48550/arXiv.2010.11929
  60. “Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions” arXiv, 2021 arXiv:2102.12122 [cs]
  61. “InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning”, 2024 arXiv:2402.06332 [cs.CL]
  62. “DeepSeek-VL: Towards Real-World Vision-Language Understanding”, 2024 arXiv:2403.05525 [cs.AI]
  63. “Qwen-Audio: Advancing Universal Audio Understanding via Unified Large-Scale Audio-Language Models”, 2023 arXiv:2311.07919 [eess.AS]
  64. Jasper Snoek, Hugo Larochelle and Ryan P. Adams “Practical Bayesian Optimization of Machine Learning Algorithms” arXiv, 2012 DOI: 10.48550/arXiv.1206.2944
  65. “Human-Level Control through Deep Reinforcement Learning” In Nature 518.7540 Nature Publishing Group, 2015, pp. 529–533 DOI: 10.1038/nature14236
  66. “Large-Scale Evolution of Image Classifiers” arXiv, 2017 DOI: 10.48550/arXiv.1703.01041
  67. “Algorithms for Hyper-Parameter Optimization” In Advances in Neural Information Processing Systems 24 Curran Associates, Inc., 2011
  68. Frank Hutter, Holger H. Hoos and Kevin Leyton-Brown “Sequential Model-Based Optimization for General Algorithm Configuration” In Learning and Intelligent Optimization Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 507–523
  69. “Optuna: A Next-generation Hyperparameter Optimization Framework” arXiv, 2019 DOI: 10.48550/arXiv.1907.10902
  70. “QLoRA: Efficient Finetuning of Quantized LLMs”, 2023 arXiv:2305.14314 [cs.LG]
  71. “Macro F1 and Macro F1” In CoRR abs/1911.03347, 2019 arXiv: http://arxiv.org/abs/1911.03347
  72. L A Balona “Gaia luminosities of pulsating A-F stars in the Kepler field” In Monthly Notices of the Royal Astronomical Society 479.1, 2018, pp. 183–191 DOI: 10.1093/mnras/sty1511
  73. “Real-Time Detection of Anomalies in Large-Scale Transient Surveys” In Monthly Notices of the Royal Astronomical Society 517.1, 2022, pp. 393–419 DOI: 10.1093/mnras/stac2582
  74. “Efficient Memory Management for Large Language Model Serving with PagedAttention”, 2023 arXiv:2309.06180 [cs.LG]
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Yu-Yang Li (2 papers)
  2. Yu Bai (136 papers)
  3. Cunshi Wang (6 papers)
  4. Mengwei Qu (1 paper)
  5. Ziteng Lu (2 papers)
  6. Roberto Soria (113 papers)
  7. Jifeng Liu (171 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com