Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Loschmidt echo, emerging dual unitarity and scaling of generalized temporal entropies after quenches to the critical point (2405.14706v3)

Published 23 May 2024 in cond-mat.stat-mech, hep-th, and quant-ph

Abstract: We show how the Loschmidt echo of a product state after a quench to a conformal invariant critical point and its leading finite time corrections can be predicted by using conformal field theories (CFT). We check such predictions with tensor networks, finding excellent agreement. As a result, we can use the Loschmidt echo to extract the universal information of the underlying CFT including the central charge, the operator content, and its generalized temporal entropies. We are also able to predict and confirm an emerging dual-unitarity of the evolution at late times, since the spatial transfer matrix operator that evolves the system in space becomes unitary in such limit. Our results on the growth of temporal entropies also imply that, using state-of-the art tensor networks algorithms, such calculations only require resources that increase polynomially with the duration of the quench, thus providing an example of numerically efficiently solvable out-of-equilibrium scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. JCCMP, Whither many-body localization? (2023).
  2. A. Chandran and P. Crowley, Physics 17, 24 (2024).
  3. J.-S. Caux and F. H. L. Essler, Phys. Rev. Lett. 110, 257203 (2013).
  4. F. H. L. Essler and A. J. J. M. de Klerk, Statistics of matrix elements of local operators in integrable models (2023), arxiv:2307.12410 [cond-mat] .
  5. O. A. Castro-Alvaredo, B. Doyon, and T. Yoshimura, Phys. Rev. X 6, 041065 (2016).
  6. P. Calabrese and J. Cardy, J. Stat. Mech. 2005, P04010 (2005).
  7. P. Calabrese and J. Cardy, J. Stat. Mech. 2007, P10004 (2007).
  8. J.-M. Stéphan and J. Dubail, J. Stat. Mech. 2011, P08019 (2011).
  9. J. Cardy and E. Tonni, J. Stat. Mech.: Theory Exp. 2016 (12), 123103.
  10. J. Surace, L. Tagliacozzo, and E. Tonni, Phys. Rev. B 101, 241107 (2020).
  11. B. Bertini, P. Kos, and T. Prosen, Phys. Rev. X 9, 021033 (2019a).
  12. B. Bertini, P. Kos, and T. Prosen, Phys. Rev. Lett. 123, 210601 (2019b).
  13. P. W. Claeys and A. Lamacraft, Phys. Rev. Lett. 126, 100603 (2021), arxiv:2009.03791 [cond-mat, physics:quant-ph] .
  14. J. Cardy, Nucl. Phys. B 270, 186 (1986a).
  15. J. L. Cardy, Nuclear Physics B 275, 200 (1986b).
  16. J. L. Cardy, J. Phys. A: Math. Gen. 17, L385 (1984).
  17. I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
  18. K. Narayan, Phys. Rev. D 91, 126011 (2015), arxiv:1501.03019 [gr-qc, physics:hep-th] .
  19. K. Narayan, Physics Letters B 753, 308 (2016), arxiv:1504.07430 [hep-th] .
  20. K. Narayan and H. K. Saini, Notes on time entanglement and pseudo-entropy (2023), arxiv:2303.01307 [hep-th] .
  21. A. Lerose, M. Sonner, and D. A. Abanin, Phys. Rev. X 11, 021040 (2021).
  22. A. Lerose, M. Sonner, and D. A. Abanin, Phys. Rev. B 107, L060305 (2023).
  23. B. Yan, L. Cincio, and W. H. Zurek, Phys. Rev. Lett. 124, 160603 (2020), arxiv:1903.02651 [quant-ph] .
  24. I. P. McCulloch, J. Stat. Mech. 2007, P10014 (2007).
  25. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nuclear Physics B 241, 333 (1984).
  26. J. Cardy, Lectures Cardy Les Houches 88 (1988).
  27. P. Ginsparg, arXiv:hep-th/9108028  (1988), arxiv:hep-th/9108028 .
  28. P. Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, Graduate Texts in Contemporary Physics (Springer-Verlag, New York, 1997).
  29. M. Henkel, Conformal Invariance and Critical Phenomena, Theoretical and Mathematical Physics (Springer-Verlag, Berlin Heidelberg, 1999).
  30. J. Cardy, 0807.3472  (2008), arxiv:0807.3472 .
  31. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).
  32. C. Callan and F. Wilczek, arXiv:hep-th/9401072 10.1016/0370-2693(94)91007-3 (1994), arxiv:hep-th/9401072 .
  33. P. Calabrese and J. Cardy, J. Stat. Mech. 2004, P06002 (2004).
  34. I. Affleck, M. Oshikawa, and H. Saleur, J. Phys. A: Math. Gen. 31, 5827 (1998).
  35. W.-z. Guo, S. He, and Y.-X. Zhang, J. High Energ. Phys. 2022 (9), 94, arxiv:2206.11818 [hep-th] .
  36. J. Surace, M. Piani, and L. Tagliacozzo, Phys. Rev. B 99, 235115 (2019).
  37. T. Rakovszky, C. W. von Keyserlingk, and F. Pollmann, Dissipation-assisted operator evolution method for capturing hydrodynamic transport (2020), arxiv:2004.05177 [cond-mat] .
  38. M. Frías-Pérez and M. C. Bañuls, Phys. Rev. B 106, 115117 (2022), arxiv:2201.08402 [quant-ph] .
  39. J. Cardy and P. Calabrese, Journal of Statistical Mechanics: Theory and Experiment 2010, P04023 (2010).
  40. V. Alba, L. Tagliacozzo, and P. Calabrese, Physical Review B 81, 60411 (2010).
  41. V. Alba, L. Tagliacozzo, and P. Calabrese, Journal of Statistical Mechanics: Theory and Experiment 06, 012 (2011).
  42. P. Calabrese, L. Tagliacozzo, and E. Tonni, J. Stat. Mech. 2013, P05002 (2013).
  43. A. Coser, L. Tagliacozzo, and E. Tonni, J. Stat. Mech. 2014, P01008 (2014).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 20 likes.

Upgrade to Pro to view all of the tweets about this paper: