Papers
Topics
Authors
Recent
2000 character limit reached

Lattice Models for Phases and Transitions with Non-Invertible Symmetries

Published 9 May 2024 in cond-mat.str-el, hep-th, math-ph, and math.MP | (2405.05964v4)

Abstract: Non-invertible categorical symmetries have emerged as a powerful tool to uncover new beyond-Landau phases of matter, both gapped and gapless, along with second order phase transitions between them. The general theory of such phases in (1+1)d has been studied using the Symmetry Topological Field Theory (SymTFT), also known as topological holography. This has unearthed the infrared (IR) structure of these phases and transitions. In this paper, we describe how the SymTFT information can be converted into an ultraviolet (UV) anyonic chain lattice model realizing, in the IR limit, these phases and transitions. In many cases, the Hilbert space of the anyonic chain is tensor product decomposable and the model can be realized as a quantum spin-chain Hamiltonian. We also describe operators acting on the lattice models that are charged under non-invertible symmetries and act as order parameters for the phases and transitions. In order to fully describe the action of non-invertible symmetries, it is crucial to understand the symmetry twisted sectors of the lattice models, which we describe in detail. Throughout the paper, we illustrate the general concepts using the symmetry category $\mathsf{Rep}(S_3)$ formed by representations of the permutation group $S_3$, but our procedure can be applied to any fusion category symmetry.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 2 likes about this paper.