Papers
Topics
Authors
Recent
2000 character limit reached

Fermionic Non-Invertible Symmetries in (1+1)d: Gapped and Gapless Phases, Transitions, and Symmetry TFTs

Published 16 May 2024 in hep-th and cond-mat.str-el | (2405.09754v2)

Abstract: We study fermionic non-invertible symmetries in (1+1)d, which are generalized global symmetries that mix fermion parity symmetry with other invertible and non-invertible internal symmetries. Such symmetries are described by fermionic fusion supercategories, which are fusion $\pi$-supercategories with a choice of fermion parity. The aim of this paper is to flesh out the categorical Landau paradigm for fermionic symmetries. We use the formalism of Symmetry Topological Field Theory (SymTFT) to study possible gapped and gapless phases for such symmetries, along with possible deformations between these phases, which are organized into a Hasse phase diagram. The phases can be characterized in terms of sets of condensed, confined and deconfined generalized symmetry charges, reminiscent of notions familiar from superconductivity. Many of the gapless phases also serve as phase transitions between gapped phases. The associated fermionic conformal field theories (CFTs) can be obtained by performing generalized fermionic Kennedy-Tasaki (KT) transformations on bosonic CFTs describing simpler transitions. The fermionic non-invertible symmetries along with their charges and phases discussed here can be obtained from those of bosonic non-invertible symmetries via fermionization or Jordan-Wigner transformation, which is discussed in detail.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.