Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

2d Sinh-Gordon model on the infinite cylinder (2405.04076v3)

Published 7 May 2024 in math.PR, math-ph, and math.MP

Abstract: For $R>0$, we give a rigorous probabilistic construction on the cylinder $\mathbb{R} \times (\mathbb{R}/(2\pi R\mathbb{Z}))$ of the (massless) Sinh-Gordon model. In particular we define the $n$-point correlation functions of the model and show that these exhibit a scaling relation with respect to $R$. The construction, which relies on the massless Gaussian Free Field, is based on the spectral analysis of a quantum operator associated to the model. Using the theory of Gaussian multiplicative chaos, we prove that this operator has discrete spectrum and a strictly positive ground state.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. N. Barashkov and F. De Vecchi. Elliptic stochastic quantization of Sinh-Gordon QFT. arXiv:2108.12664.
  2. Asymptotic expansion of a partition function related to the Sinh-model. Mathematical Physics studies, 2016.
  3. N. Berestycki and E. Powell. Gaussian Free Field and Liouville Quantum Gravity. 2023.
  4. Probabilistic construction of Toda conformal field theories. Annales Henri Lebesgue, 6(31-64), 2023.
  5. Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869–907, 2016.
  6. H. Dorn and H.-J. Otto. Two- and three-point functions in Liouville theory. Nuclear Phys. B, 429(2):375–388, 1994.
  7. Conformal bootstrap in Liouville Theory. Acta Mathematica, (to appear):arXiv:2005.11530, May 2020.
  8. Segal’s axioms and bootstrap for Liouville Theory. arXiv e-prints, page arXiv:2112.14859, December 2021.
  9. Polyakov’s formulation of 2⁢d2𝑑2d2 italic_d bosonic string theory. Publ. Math. Inst. Hautes Études Sci., 130:111–185, 2019.
  10. J-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985.
  11. Approaching the self-dual point of the sinh-Gordon model. Journal of High Energy Physics, 2021(1):1–85, 2021.
  12. Integrability of Liouville theory: proof of the DOZZ formula. Ann. of Math. (2), 191(1):81–166, 2020.
  13. S. Lukyanov. Finite temperature expectation values of local fields in the sinh-Gordon model. Nuclear Physics B, 612:391–412, 2001.
  14. S. Lukyanov and A. Zamolodchikov. Exact expectation values of local fields in quan- tum sine-Gordon model. Nuclear Physics B, 493:571–587, 1997.
  15. H. Osada and H. Spohn. Gibbs measures relative to Brownian motion. Annals of probability, pages 1183–1207, 1999.
  16. A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981.
  17. M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume IV. Analysis of operators. Academic Press, 1978.
  18. R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. Annals of Probability, 38(2):605–631, 2010.
  19. R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv., 11:315–392, 2014.
  20. A-S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer-Verlag, 1988.
  21. J. Teschner. On the spectrum of the Sinh-Gordon model in finite volume. Nuclear Physics B, 799:403–429, 2008.
  22. A. Zamolodchikov and Al. Zamolodchikov. Conformal bootstrap in Liouville field theory. Nuclear Phys. B, 477(2):577–605, 1996.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.