2000 character limit reached
2d Sinh-Gordon model on the infinite cylinder (2405.04076v3)
Published 7 May 2024 in math.PR, math-ph, and math.MP
Abstract: For $R>0$, we give a rigorous probabilistic construction on the cylinder $\mathbb{R} \times (\mathbb{R}/(2\pi R\mathbb{Z}))$ of the (massless) Sinh-Gordon model. In particular we define the $n$-point correlation functions of the model and show that these exhibit a scaling relation with respect to $R$. The construction, which relies on the massless Gaussian Free Field, is based on the spectral analysis of a quantum operator associated to the model. Using the theory of Gaussian multiplicative chaos, we prove that this operator has discrete spectrum and a strictly positive ground state.
- N. Barashkov and F. De Vecchi. Elliptic stochastic quantization of Sinh-Gordon QFT. arXiv:2108.12664.
- Asymptotic expansion of a partition function related to the Sinh-model. Mathematical Physics studies, 2016.
- N. Berestycki and E. Powell. Gaussian Free Field and Liouville Quantum Gravity. 2023.
- Probabilistic construction of Toda conformal field theories. Annales Henri Lebesgue, 6(31-64), 2023.
- Liouville quantum gravity on the Riemann sphere. Comm. Math. Phys., 342(3):869–907, 2016.
- H. Dorn and H.-J. Otto. Two- and three-point functions in Liouville theory. Nuclear Phys. B, 429(2):375–388, 1994.
- Conformal bootstrap in Liouville Theory. Acta Mathematica, (to appear):arXiv:2005.11530, May 2020.
- Segal’s axioms and bootstrap for Liouville Theory. arXiv e-prints, page arXiv:2112.14859, December 2021.
- Polyakov’s formulation of 2d2𝑑2d2 italic_d bosonic string theory. Publ. Math. Inst. Hautes Études Sci., 130:111–185, 2019.
- J-P. Kahane. Sur le chaos multiplicatif. Ann. Sci. Math. Québec, 9(2):105–150, 1985.
- Approaching the self-dual point of the sinh-Gordon model. Journal of High Energy Physics, 2021(1):1–85, 2021.
- Integrability of Liouville theory: proof of the DOZZ formula. Ann. of Math. (2), 191(1):81–166, 2020.
- S. Lukyanov. Finite temperature expectation values of local fields in the sinh-Gordon model. Nuclear Physics B, 612:391–412, 2001.
- S. Lukyanov and A. Zamolodchikov. Exact expectation values of local fields in quan- tum sine-Gordon model. Nuclear Physics B, 493:571–587, 1997.
- H. Osada and H. Spohn. Gibbs measures relative to Brownian motion. Annals of probability, pages 1183–1207, 1999.
- A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B, 103(3):207–210, 1981.
- M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume IV. Analysis of operators. Academic Press, 1978.
- R. Robert and V. Vargas. Gaussian multiplicative chaos revisited. Annals of Probability, 38(2):605–631, 2010.
- R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv., 11:315–392, 2014.
- A-S. Sznitman. Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer-Verlag, 1988.
- J. Teschner. On the spectrum of the Sinh-Gordon model in finite volume. Nuclear Physics B, 799:403–429, 2008.
- A. Zamolodchikov and Al. Zamolodchikov. Conformal bootstrap in Liouville field theory. Nuclear Phys. B, 477(2):577–605, 1996.
Collections
Sign up for free to add this paper to one or more collections.