2000 character limit reached
Probabilistic Finite Automaton Emptiness is undecidable (2405.03035v2)
Published 5 May 2024 in cs.FL
Abstract: It is undecidable whether the language recognized by a probabilistic finite automaton is empty. Several other undecidability results, in particular regarding problems about matrix products, are based on this important theorem. We present three proofs of this theorem from the literature in a self-contained way, and we derive some strengthenings. For example, we show that the problem remains undecidable for a fixed probabilistic finite automaton with 11 states, where only the starting distribution is given as input.
- The boundedness of all products of a pair of matrices is undecidable. Systems & Control Letters, 41(2):135–140, 2000. doi:10.1016/S0167-6911(00)00049-9.
- Vuong Bui. Growth of bilinear maps. Linear Algebra and its Applications, 624:198–213, 2021. arXiv:2005.09540, doi:10.1016/J.LAA.2021.04.010.
- Vuong Bui. Growth of Bilinear Maps. PhD thesis, Freie Universität Berlin, Institut für Informatik, 2023. doi:10.17169/refubium-41705.
- Volker Claus. Stochastische Automaten. Teubner Studienskripten. B. G. Teubner, Stuttgart, 1971.
- A. Condon and R. J. Lipton. On the complexity of space bounded interactive proofs. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, SFCS ’89, page 462–467, USA, 1989. IEEE Computer Society. doi:10.1109/SFCS.1989.63519.
- Matthew Cook. Universality in elementary cellular automata. Complex Systems, 15:1–40, 2004. doi:10.25088/ComplexSystems.15.1.1252525This is the DOI according to the web page of the journal. As of 2024-05-01, the DOI link did not work. URL: http://www.complex-systems.com/abstracts/v15_i01_a01.html.
- Oliver Lawson Dick, editor. Aubrey’s Brief Lives. Secker and Warburg, London, 1949.
- Rūsiņš Freivalds. Probabilistic two-way machines. In Jozef Gruska and Michal Chytil, editors, Mathematical Foundations of Computer Science 1981 (MFCS), volume 118 of Lecture Notes in Computer Science, pages 33–45. Springer, 1981. doi:10.1007/3-540-10856-4_72.
- Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
- On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell., 147(1–2):5–34, 2003. doi:10.1016/S0004-3702(02)00378-8.
- Marvin L. Minsky. Recursive unsolvability of Post’s problem of ‘tag’ and other topics in theory of Turing machines. Annals of Mathematics, 74(3):437–455, 1961. doi:10.2307/1970290.
- Fuzzy events realized by finite probabilistic automata. Information and Control, 12(4):284–303, 1968. doi:10.1016/S0019-9958(68)90353-7.
- Mappings induced by PGSM-mappings and some recursively unsolvable problems of finite probabilistic automata. Information and Control, 15(3):250–273, 1969. doi:10.1016/S0019-9958(69)90449-5.
- Turlough Neary. Undecidability in binary tag systems and the Post correspondence problem for five pairs of words. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015), volume 30 of Leibniz International Proceedings in Informatics (LIPIcs), pages 649–661, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.STACS.2015.649.
- Four small universal Turing machines. Fundamenta Informaticae, 91:123–144, 2009. doi:10.3233/FI-2009-0036.
- Small weakly universal Turing machines. In Mirosław Kutyłowski, Witold Charatonik, and Maciej Gębala, editors, Fundamentals of Computation Theory, volume 5699 of Lecture Notes in Computer Science, pages 262–273, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. arXiv:0707.4489, doi:10.1007/978-3-642-03409-1_24.
- Carl V. Page. Equivalences between probabilistic and deterministic sequential machines. Information and Control, 9(5):469–520, 1966. doi:10.1016/S0019-9958(66)80012-8.
- Azaria Paz. Introduction to Probabilistic Automata. Computer Science and Applied Mathematics. Academic Press, New York, 1971.
- Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963. doi:10.1016/S0019-9958(63)90290-0.
- Matthieu Rosenfeld. The growth rate over trees of any family of sets defined by a monadic second order formula is semi-computable. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, Virtual Conference, January 10–13, 2021, pages 776–795. SIAM, 2021. doi:10.1137/1.9781611976465.49.
- Matthieu Rosenfeld. It is undecidable whether the growth rate of a given bilinear system is 1. Linear Algebra and its Applications, 651:131–143, 2022. arXiv:2201.07630, doi:10.1016/j.laa.2022.06.022.
- Günter Rote. The maximum number of minimal dominating sets in a tree. In Timothy Chan, editor, Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA19), San Diego, pages 1201–1214. SIAM, 2019. doi:10.1137/1.9781611975482.73.
- M. P. Schutzenberger. Certain elementary families of automata. In Jerome Fox, editor, Mathematical Theory of Automata, volume 12 of Microwave Research Symposia Series, pages 139–153. Polytechnic Press of the Polytechnic Institute of Brooklyn, Brooklyn, N.Y., 1963.
- Michael Sipser. Introduction to the Theory of Computation. PWS Publishing Company, 1997.
- Alex Smith. Universality of Wolfram’s 2, 3 Turing machine. Complex Systems, 29:1–44, 2020. doi:10.25088/ComplexSystems.29.1.1.
- Paavo Turakainen. Generalized automata and stochastic languages. Proc. Amer. Math. Soc., 21:303–309, 1969. doi:10.1090/S0002-9939-1969-0242596-1.
- A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–265, 1937. doi:10.1112/plms/s2-42.1.230.
- Shigeru Watanabe. 4-symbol 5-state universal Turing machine. Information Processing Society of Japan Magazine, 13(9):588–592, 1972.
- Stephen Wolfram. A New Kind of Science. Wolfram Media, 2002. URL: https://www.wolframscience.com/nks/.
- The complexity of small universal Turing machines: A survey. Theoretical Computer Science, 410(4):443–450, 2009. Computational Paradigms from Nature. arXiv:1110.2230, doi:10.1016/j.tcs.2008.09.051.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.