Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From quantum difference equation to Dubrovin connection of affine type A quiver varieties (2405.02473v3)

Published 3 May 2024 in math.RT, math-ph, math.MP, and math.QA

Abstract: This is the continuation of the article \cite{Z23}. In this article we will give a detailed analysis of the quantum difference equation of the equivariant $K$-theory of the affine type $A$ quiver varieties. We will give a good representation of the quantum difference operator $\mathbf{M}{\mathcal{L}}(z)$ such that the monodromy operator $\mathbf{B}{\mathbf{m}}(z)$in the formula can be written in the $U_{q}(\mathfrak{sl}2)$-form or in the $U{q}(\hat{\mathfrak{gl}}1)$-form. We also give the detailed analysis of the connection matrix for the quantum difference equation in the nodal limit $p\rightarrow0$. Using these two results, we prove that the degeneration limit of the quantum difference equation is the Dubrovin connection for the quantum cohomology of the affine type $A$ quiver varieties, and the monodromy representation for the Dubrovin connection is generated by the monodromy operators $\mathbf{B}{\mathbf{m}}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (13)
  1. Dinkins H. Elliptic stable envelopes of affine type Aš“Aitalic_A quiver varieties[J]. arXiv preprint arXiv:2107.09569, 2021.
  2. Danilenko I. Quantum Differential Equation for Slices of the Affine Grassmannian[J]. arXiv preprint arXiv:2210.17061, 2022.
  3. Kirillov A N, Reshetikhin N. q-Weyl group and a multiplicative formula for universal R-matrices[J]. 1990.
  4. Negut A. Quantum algebras and cyclic quiver varieties[M]. Columbia University, 2015.
  5. Negu\textcommabelowt A. SHUFFLE ALGEBRAS FOR QUIVERS AND R-MATRICES[J]. Journal of the Institute of Mathematics of Jussieu, 2022: 1-36.
  6. NeguÅ£ A. Quantum loop groups and Kš¾Kitalic_K-theoretic stable envelopes[J]. arXiv preprint arXiv:2303.12041, 2023.
  7. Nakajima H. Lectures on Hilbert schemes of points on surfaces[M]. American Mathematical Soc., 1999.
  8. Okounkov A. Lectures on K-theoretic computations in enumerative geometry[J]. arXiv preprint arXiv:1512.07363, 2015.
  9. Smirnov A. Rationality of capped descendent vertex in Kš¾Kitalic_K-theory[J]. arXiv preprint arXiv:1612.01048, 2016.
  10. Smirnov A. Quantum differential and difference equations for Hilbn⁢(ā„‚2)superscriptHilbš‘›superscriptā„‚2\mathrm{Hilb}^{n}(\mathbb{C}^{2})roman_Hilb start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( blackboard_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )[J]. arXiv preprint arXiv:2102.10726, 2021.
  11. Schiffmann O, Vasserot E. On cohomological Hall algebras of quivers: Yangians (2017)[J]. arXiv preprint arXiv:1705.07491.
  12. Zhu T. Quantum Difference equation for the affine type Aš“Aitalic_A quiver varieties I: General Construction[J]. arXiv preprint arXiv:2308.00550, 2023.
  13. Zhu T. Quantum difference equation from shuffle algebras. In preparation.
Citations (2)

Summary

We haven't generated a summary for this paper yet.