Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

$R_{D^{(*)}}$ and survival of the fittest scalar leptoquark (2404.16772v2)

Published 25 Apr 2024 in hep-ph

Abstract: Motivated by the long-standing discrepancy in lepton flavor universality ratios $R_D$ and $R_{D{\ast}}$ we assess the status of scalar leptoquark states $R_2$, $\widetilde R_2$ and $S_1$ which can in principle provide a desired enhancement of $\mathcal{B}(B\to D{(\ast )}\tau \nu)$ in a minimal setup with two Yukawa couplings only. We consider unavoidable low-energy constraints, $Z$-pole measurements as well as high-$p_T$ constraints. After setting mass of each leptoquark to $1.5$ TeV we find that of all considered states only $S_1$ leptoquark, coupled to both chiralities of leptons and quarks, is still a completely viable solution while the scenario with $R_2$ is in growing tension with $\Gamma(Z \to \tau \tau)$ and with the LHC constraints on the di-tau tails at high-$p_T$. We comment on the future experimental tests of $S_1$ scenario.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. D. Bečirević et al., Phys. Rev. D 98, 055003 (2018), 1806.05689.
  2. JHEP 06, 020 (2020), 1912.04224.
  3. JHEP 01, 138 (2021), 2008.09548.
  4. D. Bečirević et al., Phys. Rev. D 106, 075023 (2022), 2206.09717.
  5. JHEP 11, 044 (2017), 1706.07808.
  6. Phys. Lett. B 779, 317 (2018), 1712.01368.
  7. LHCb, R. Aaij et al., Phys. Rev. Lett. 131, 051803 (2023), 2212.09152.
  8. Belle-II, I. Adachi et al., (2023), 2311.14647.
  9. Eur. Phys. J. C 83, 252 (2023), 2301.06990.
  10. O. Catà and M. Jung, Phys. Rev. D 92, 055018 (2015), 1505.05804.
  11. W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621 (1986).
  12. JHEP 10, 085 (2010), 1008.4884.
  13. JHEP 01, 035 (2014), 1310.4838.
  14. JHEP 04, 159 (2014), 1312.2014.
  15. Phys. Lett. B 670, 399 (2009), 0806.0876.
  16. JHEP 09, 001 (2023), 2304.06772.
  17. K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997), hep-ph/9703278.
  18. Phys. Lett. B 405, 327 (1997), hep-ph/9703284.
  19. J. A. Gracey, Phys. Rev. D 106, 085008 (2022), 2208.14527.
  20. Phys. Lett. B 400, 379 (1997), hep-ph/9701390.
  21. Phys. Rev. Lett. 79, 2184 (1997), hep-ph/9706430.
  22. HFLAV, Y. S. Amhis et al., Phys. Rev. D 107, 052008 (2023), 2206.07501.
  23. MILC, J. A. Bailey et al., Phys. Rev. D 92, 034506 (2015), 1503.07237.
  24. Phys. Rev. D 92, 054510 (2015), 1505.03925, [Erratum: Phys.Rev.D 93, 119906 (2016)].
  25. Flavour Lattice Averaging Group (FLAG), Y. Aoki et al., Eur. Phys. J. C 82, 869 (2022), 2111.09849.
  26. Phys. Rev. D 56, 6895 (1997), hep-ph/9705252.
  27. Eur. Phys. J. C 82, 1141 (2022), 2105.14019, [Erratum: Eur.Phys.J.C 83, 21 (2023)].
  28. J. Harrison and C. T. H. Davies, (2023), 2304.03137.
  29. JLQCD, Y. Aoki et al., Phys. Rev. D 109, 074503 (2024), 2306.05657.
  30. Nucl. Phys. B 530, 153 (1998), hep-ph/9712417.
  31. Belle, M. T. Prim et al., Phys. Rev. D 108, 012002 (2023), 2301.07529.
  32. Eur. Phys. J. C 84, 400 (2024), 2310.03680.
  33. Phys. Rev. D 105, 034503 (2022), 2105.08674.
  34. Eur. Phys. J. C 74, 2861 (2014), 1310.5238.
  35. JHEP 11, 191 (2018), 1806.10155.
  36. (2022), 2210.10751.
  37. JHEP 08, 022 (2020), 2004.06726.
  38. ATLAS, G. Aad et al., Phys. Rev. Lett. 125, 051801 (2020), 2002.12223.
  39. ATLAS, Report number ATLAS-CONF-2021-025, (2021).
  40. CMS, A. Tumasyan et al., JHEP 07, 073 (2023), 2208.02717.
  41. Comput. Phys. Commun. 289, 108749 (2023), 2207.10756.
  42. ATLAS, G. Aad et al., JHEP 06, 179 (2021), 2101.11582.
  43. ATLAS, G. Aad et al., (2024), 2401.11928.
  44. CMS, A. Hayrapetyan et al., (2023), 2308.07826.
  45. Phys. Lett. B 848, 138411 (2024), 2309.02246.
  46. Particle Data Group, R. L. Workman et al., PTEP 2022, 083C01 (2022).
  47. JHEP 02, 109 (2019), 1901.06315.
  48. Phys. Rept. 427, 257 (2006), hep-ex/0509008.
  49. Phys. Rev. Lett. 118, 011801 (2017), 1606.00524.
  50. Phys. Rev. D 88, 094012 (2013), 1309.0301.
  51. ATLAS, G. Aad et al., JHEP 06, 199 (2023), 2303.09444.
  52. F. Jaffredo, Eur. Phys. J. C 82, 541 (2022), 2112.14604.
  53. D. M. Straub, (2018), 1810.08132.
  54. P. Stangl, flav-io/flavio: v2.5.5, 2023.
  55. Phys. Rev. D 83, 034030 (2011), 1009.0947.
  56. CMS, A. M. Sirunyan et al., JHEP 02, 191 (2020), 1911.13204.
  57. JHEP 07, 194 (2020), 2005.03032.
  58. Nucl. Phys. B 946, 114707 (2019), 1602.03030.
  59. Eur. Phys. J. C 81, 984 (2021), 2104.02094.
  60. R. J. Dowdall et al., Phys. Rev. D 100, 094508 (2019), 1907.01025.
  61. Nucl. Phys. B 347, 491 (1990).
  62. Rev. Mod. Phys. 88, 045002 (2016), 1511.09466, [Addendum: Rev.Mod.Phys. 91, 049901 (2019)].
  63. G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B 153, 365 (1979).
  64. (2023), 2312.14089.
  65. H. H. Patel, Comput. Phys. Commun. 218, 66 (2017), 1612.00009.
  66. T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999), hep-ph/9807565.
  67. T. Hahn, PoS ACAT2010, 078 (2010), 1006.2231.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: