Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Support Relations Inference and Scene Hierarchy Graph Construction from Point Cloud in Clustered Environments (2404.13842v1)

Published 22 Apr 2024 in cs.CV and cs.CG

Abstract: Over the years, scene understanding has attracted a growing interest in computer vision, providing the semantic and physical scene information necessary for robots to complete some particular tasks autonomously. In 3D scenes, rich spatial geometric and topological information are often ignored by RGB-based approaches for scene understanding. In this study, we develop a bottom-up approach for scene understanding that infers support relations between objects from a point cloud. Our approach utilizes the spatial topology information of the plane pairs in the scene, consisting of three major steps. 1) Detection of pairwise spatial configuration: dividing primitive pairs into local support connection and local inner connection; 2) primitive classification: a combinatorial optimization method applied to classify primitives; and 3) support relations inference and hierarchy graph construction: bottom-up support relations inference and scene hierarchy graph construction containing primitive level and object level. Through experiments, we demonstrate that the algorithm achieves excellent performance in primitive classification and support relations inference. Additionally, we show that the scene hierarchy graph contains rich geometric and topological information of objects, and it possesses great scalability for scene understanding.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
  2. M. Zhen, J. Wang, L. Zhou, S. Li, T. Shen, J. Shang, T. Fang, and L. Quan, “Joint semantic segmentation and boundary detection using iterative pyramid contexts,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 13 666–13 675.
  3. S. Minaee, Y. Y. Boykov, F. Porikli, A. J. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image segmentation using deep learning: A survey,” IEEE transactions on pattern analysis and machine intelligence, 2021.
  4. C. Liu, A. G. Schwing, K. Kundu, R. Urtasun, and S. Fidler, “Rent3d: Floor-plan priors for monocular layout estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 3413–3421.
  5. M. Hayat, S. H. Khan, M. Bennamoun, and S. An, “A spatial layout and scale invariant feature representation for indoor scene classification,” IEEE Transactions on Image Processing, vol. 25, no. 10, pp. 4829–4841, 2016.
  6. C. Yan, B. Shao, H. Zhao, R. Ning, Y. Zhang, and F. Xu, “3d room layout estimation from a single rgb image,” IEEE Transactions on Multimedia, vol. 22, no. 11, pp. 3014–3024, 2020.
  7. J. Wald, H. Dhamo, N. Navab, and F. Tombari, “Learning 3d semantic scene graphs from 3d indoor reconstructions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 3961–3970.
  8. U.-H. Kim, J.-M. Park, T.-J. Song, and J.-H. Kim, “3-d scene graph: A sparse and semantic representation of physical environments for intelligent agents,” IEEE transactions on cybernetics, vol. 50, no. 12, pp. 4921–4933, 2019.
  9. R. Mojtahedzadeh, A. Bouguerra, E. Schaffernicht, and A. J. Lilienthal, “Support relation analysis and decision making for safe robotic manipulation tasks,” Robotics and Autonomous Systems, vol. 71, pp. 99–117, 2015.
  10. B. Zheng, Y. Zhao, J. C. Yu, K. Ikeuchi, and S.-C. Zhu, “Beyond point clouds: Scene understanding by reasoning geometry and physics,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 3127–3134.
  11. X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. G. Hauptmann, “A comprehensive survey of scene graphs: Generation and application,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.
  12. J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei, “Image retrieval using scene graphs,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3668–3678.
  13. J. Johnson, A. Gupta, and L. Fei-Fei, “Image generation from scene graphs,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1219–1228.
  14. B. Schroeder and S. Tripathi, “Structured query-based image retrieval using scene graphs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 178–179.
  15. M. Y. Yang, W. Liao, H. Ackermann, and B. Rosenhahn, “On support relations and semantic scene graphs,” ISPRS journal of photogrammetry and remote sensing, vol. 131, pp. 15–25, 2017.
  16. N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation and support inference from rgbd images,” in European conference on computer vision.   Springer, 2012, pp. 746–760.
  17. F. Xue, S. Xu, C. He, M. Wang, and R. Hong, “Towards efficient support relation extraction from rgbd images,” Information Sciences, vol. 320, pp. 320–332, 2015.
  18. W. Zhuo, M. Salzmann, X. He, and M. Liu, “Indoor scene parsing with instance segmentation, semantic labeling and support relationship inference,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 5429–5437.
  19. S. Aditya, Y. Yang, C. Baral, Y. Aloimonos, and C. Fermüller, “Image understanding using vision and reasoning through scene description graph,” Computer Vision and Image Understanding, vol. 173, pp. 33–45, 2018.
  20. J. Shi, H. Zhang, and J. Li, “Explainable and explicit visual reasoning over scene graphs,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 8376–8384.
  21. J. Zhang, Y. Kalantidis, M. Rohrbach, M. Paluri, A. Elgammal, and M. Elhoseiny, “Large-scale visual relationship understanding,” in Proceedings of the AAAI conference on artificial intelligence, vol. 33, no. 01, 2019, pp. 9185–9194.
  22. I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and S. Savarese, “3d scene graph: A structure for unified semantics, 3d space, and camera,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 5664–5673.
  23. A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi, A. Gupta, and L. Carlone, “Kimera: From slam to spatial perception with 3d dynamic scene graphs,” The International Journal of Robotics Research, vol. 40, no. 12-14, pp. 1510–1546, 2021.
  24. B. Zhuang, Q. Wu, C. Shen, I. Reid, and A. van den Hengel, “Hcvrd: a benchmark for large-scale human-centered visual relationship detection,” in Thirty-Second AAAI Conference on Artificial Intelligence, 2018.
  25. J. Li, Y. Wong, Q. Zhao, and M. S. Kankanhalli, “Visual social relationship recognition,” International Journal of Computer Vision, vol. 128, no. 6, pp. 1750–1764, 2020.
  26. O. Mattausch, D. Panozzo, C. Mura, O. Sorkine-Hornung, and R. Pajarola, “Object detection and classification from large-scale cluttered indoor scans,” in Computer Graphics Forum, vol. 33, no. 2.   Wiley Online Library, 2014, pp. 11–21.
  27. C. Mura, O. Mattausch, and R. Pajarola, “Piecewise-planar reconstruction of multi-room interiors with arbitrary wall arrangements,” in Computer Graphics Forum, vol. 35, no. 7.   Wiley Online Library, 2016, pp. 179–188.
  28. F. Su, H. Zhu, T. Chen, L. Li, F. Yang, H. Peng, L. Tang, X. Zuo, Y. Liang, and S. Ying, “An anchor-based graph method for detecting and classifying indoor objects from cluttered 3d point clouds,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 172, pp. 114–131, 2021.
  29. Z. Jia, A. Gallagher, A. Saxena, and T. Chen, “3d-based reasoning with blocks, support, and stability,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013, pp. 1–8.
  30. Y. Xiang, C. Xie, A. Mousavian, and D. Fox, “Learning rgb-d feature embeddings for unseen object instance segmentation,” in Conference on Robot Learning.   PMLR, 2021, pp. 461–470.
  31. C. Xie, Y. Xiang, A. Mousavian, and D. Fox, “Unseen object instance segmentation for robotic environments,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1343–1359, 2021.
  32. ——, “The best of both modes: Separately leveraging rgb and depth for unseen object instance segmentation,” in Conference on robot learning.   PMLR, 2020, pp. 1369–1378.
  33. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 2961–2969.
  34. S. Christoph Stein, M. Schoeler, J. Papon, and F. Worgotter, “Object partitioning using local convexity,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 304–311.
  35. A. Richtsfeld, T. Mörwald, J. Prankl, M. Zillich, and M. Vincze, “Segmentation of unknown objects in indoor environments,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.   IEEE, 2012, pp. 4791–4796.
  36. M. Suchi, T. Patten, D. Fischinger, and M. Vincze, “Easylabel: A semi-automatic pixel-wise object annotation tool for creating robotic rgb-d datasets,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 6678–6684.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: