Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Conformal measure rigidity and ergodicity of horospherical foliations (2404.13727v2)

Published 21 Apr 2024 in math.GT, math.DS, and math.GR

Abstract: In this paper, we establish a higher rank extension of rigidity theorems of Sullivan, Tukia, Yue, and Kim-Oh for representations of rank one discrete subgroups of divergence type, in terms of the push-forwards of conformal measures via boundary maps. We consider a certain class of higher rank discrete subgroups, which we call hypertransverse subgroups. It includes all rank one discrete subgroups, Anosov subgroups, relatively Anosov subgroups, and their subgroups. Our proof of the rigidity theorem generalizes the idea of Kim-Oh to self-joinings of higher rank hypertransverse subgroups, overcoming the lack of CAT(-1) geometry on symmetric spaces. In contrast to the work of Sullivan, Tukia, and Yue, our argument is closely related to the study of horospherical foliations. We also show the ergodicity of horospherical foliations with respect to Burger-Roblin measures. This generalizes the classical work of Hedlund, Burger, and Roblin in rank one and of Lee-Oh for Borel Ansov subgroups in higher rank.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. M. Babillot. On the classification of invariant measures for horosphere foliations on nilpotent covers of negatively curved manifolds. In Random walks and geometry, pages 319–335. Walter de Gruyter, Berlin, 2004.
  2. Y. Benoist. Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal., 7(1):1–47, 1997.
  3. Y. Benoist. Propriétés asymptotiques des groupes linéaires. II. In Analysis on homogeneous spaces and representation theory of Lie groups, Okayama–Kyoto (1997), volume 26 of Adv. Stud. Pure Math., pages 33–48. Math. Soc. Japan, Tokyo, 2000.
  4. Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal., 5(5):731–799, 1995.
  5. Minimal entropy and Mostow’s rigidity theorems. Ergodic Theory Dynam. Systems, 16(4):623–649, 1996.
  6. Patterson-Sullivan theory for coarse cocycles. Preprint arXiv:2404.09713, 2024.
  7. B. Bowditch. Convergence groups and configuration spaces. In Geometric group theory down under (Canberra, 1996), pages 23–54. de Gruyter, Berlin, 1999.
  8. Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations. J. Reine Angew. Math., 791:1–51, 2022.
  9. M. Bridson and A. Haefliger. Metric spaces of non-positive curvature, volume 319 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999.
  10. M. Burger. Horocycle flow on geometrically finite surfaces. Duke Math. J., 61(3):779–803, 1990.
  11. Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups. Adv. Math., 404:Paper No. 108439, 67, 2022.
  12. Patterson-Sullivan measures for relatively Anosov groups. Preprint arXiv:2308.04023, 2023.
  13. Patterson-Sullivan measures for transverse subgroups. Preprint, arXiv:2304.11515, 2023.
  14. Anosov representations and proper actions. Geom. Topol., 21(1):485–584, 2017.
  15. O. Guichard and A. Wienhard. Anosov representations: domains of discontinuity and applications. Invent. Math., 190(2):357–438, 2012.
  16. G. A. Hedlund. Fuchsian groups and mixtures. Ann. of Math. (2), 40(2):370–383, 1939.
  17. I. Kapovich and N. Benakli. Boundaries of hyperbolic groups. In Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), volume 296 of Contemp. Math., pages 39–93. Amer. Math. Soc., Providence, RI, 2002.
  18. Anosov subgroups: dynamical and geometric characterizations. Eur. J. Math., 3(4):808–898, 2017.
  19. D. M. Kim and H. Oh. Conformal measure rigidity for representations via self-joinings. arXiv preprint arXiv:2302.03539, 2023.
  20. D. M. Kim and H. Oh. Rigidity of Kleinian groups via self-joinings. Invent. Math., 234(3):937–948, 2023.
  21. D. M. Kim and H. Oh. Rigidity of Kleinian groups via self-joinings: measure theoretic criterion. arXiv preprint arXiv:2302.03552, 2023.
  22. Ergodic dichotomy for subspace flows in higher rank. arXiv preprint arXiv:2310.19976, 2023.
  23. Properly discontinuous actions, Growth indicators and Conformal measures for transverse subgroups. arXiv preprint arXiv:2306.06846, 2023.
  24. I. Kim. Length spectrum in rank one symmetric space is not arithmetic. Proc. Amer. Math. Soc., 134(12):3691–3696, 2006.
  25. F. Labourie. Anosov flows, surface groups and curves in projective space. Invent. Math., 165(1):51–114, 2006.
  26. Horospherical invariant measures and a rank dichotomy for Anosov groups. J. Mod. Dyn., 19:331–362, 2023.
  27. O. Landesberg and E. Lindenstrauss. On Radon measures invariant under horospherical flows on geometrically infinite quotients. Int. Math. Res. Not. IMRN, (15):11602–11641, 2022.
  28. M. Lee and H. Oh. Invariant measures for horospherical actions and Anosov groups. Int. Math. Res. Not. IMRN, (19):16226–16295, 2023.
  29. G. Mostow. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, No. 78. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1973.
  30. G. Prasad. Strong rigidity of 𝐐𝐐{\bf Q}bold_Q-rank 1111 lattices. Invent. Math., 21:255–286, 1973.
  31. J.-F. Quint. Mesures de Patterson-Sullivan en rang supérieur. Geom. Funct. Anal., 12(4):776–809, 2002.
  32. T. Roblin. Ergodicité et équidistribution en courbure négative. Mém. Soc. Math. Fr. (N.S.), (95):vi+96, 2003.
  33. A. Sambarino. A report on an ergodic dichotomy. Ergodic Theory Dynam. Systems, 44(1):236–289, 2024.
  34. K. Schmidt. Cocycles on ergodic transformation groups. Macmillan Lectures in Mathematics, Vol. 1. Macmillan Co. of India, Ltd., Delhi, 1977.
  35. D. Sullivan. The density at infinity of a discrete group of hyperbolic motions. Inst. Hautes Études Sci. Publ. Math., (50):171–202, 1979.
  36. D. Sullivan. Discrete conformal groups and measurable dynamics. Bull. Amer. Math. Soc. (N.S.), 6(1):57–73, 1982.
  37. P. Tukia. A rigidity theorem for Möbius groups. Invent. Math., 97(2):405–431, 1989.
  38. P. Tukia. The Poincaré series and the conformal measure of conical and Myrberg limit points. J. Anal. Math., 62:241–259, 1994.
  39. C. Yue. Mostow rigidity of rank 1111 discrete groups with ergodic Bowen-Margulis measure. Invent. Math., 125(1):75–102, 1996.
  40. F. Zhu and A. Zimmer. Relatively Anosov representations via flows I: theory. Preprint arXiv:2207.14737, 2022.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 15 likes.

Upgrade to Pro to view all of the tweets about this paper: