Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

PEACH: Pretrained-embedding Explanation Across Contextual and Hierarchical Structure (2404.13645v1)

Published 21 Apr 2024 in cs.CL

Abstract: In this work, we propose a novel tree-based explanation technique, PEACH (Pretrained-embedding Explanation Across Contextual and Hierarchical Structure), that can explain how text-based documents are classified by using any pretrained contextual embeddings in a tree-based human-interpretable manner. Note that PEACH can adopt any contextual embeddings of the PLMs as a training input for the decision tree. Using the proposed PEACH, we perform a comprehensive analysis of several contextual embeddings on nine different NLP text classification benchmarks. This analysis demonstrates the flexibility of the model by applying several PLM contextual embeddings, its attribute selections, scaling, and clustering methods. Furthermore, we show the utility of explanations by visualising the feature selection and important trend of text classification via human-interpretable word-cloud-based trees, which clearly identify model mistakes and assist in dataset debugging. Besides interpretability, PEACH outperforms or is similar to those from pretrained models.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets