Phenomenology of 3-3-1 models with radiative inverse seesaw mechanism (2404.13373v1)
Abstract: We propose two models based on the $SU(3)_C \times SU(3)_L \times U(1)_X$ gauge symmetry, each incorporating distinct inverse seesaw mechanisms for generating neutrino masses at the radiative level. Therefore, neutrino masses are suppressed by the radiative nature of the mass generation mechanism, which occurs after the spontaneous breaking of the global lepton number symmetry. Both scenarios discussed here are characterized by the presence of vector-like charged leptons, which are involved in generating the masses of the Standard Model charged leptons. These additional vector-like fermions contribute to the anomalous magnetic moments of the electron and the muon. We perform a detailed analysis of the scalar sectors, show that these models can successfully accommodate the observed baryon asymmetry through resonant leptogenesis, and compute charged lepton flavor-violating decays, such as $\mu \rightarrow e \gamma$. We discuss the constraints of the model arising from these processes and those associated the non-unitarity of the lepton mixing matrix.
- A. B. McDonald, “Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos,” Rev.Mod.Phys. 88 (2016) 030502.
- T. Kajita, “Nobel Lecture: Discovery of atmospheric neutrino oscillations,” Rev.Mod.Phys. 88 (2016) 030501.
- P. de Salas et al., “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
- Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- C. A. de Sousa Pires and O. P. Ravinez, “Charge quantization in a chiral bilepton gauge model,” Phys. Rev. D 58 (1998) 035008, arXiv:hep-ph/9803409.
- P. V. Dong and H. N. Long, “Electric charge quantization in SU(3)(C) x SU(3)(L) x U(1)(X) models,” Int. J. Mod. Phys. A 21 (2006) 6677–6692, arXiv:hep-ph/0507155.
- J. C. Montero, V. Pleitez, and O. Ravinez, “Soft superweak CP violation in a 331 model,” Phys. Rev. D 60 (1999) 076003, arXiv:hep-ph/9811280.
- J. C. Montero, C. C. Nishi, V. Pleitez, O. Ravinez, and M. C. Rodriguez, “Soft CP violation in K𝐾Kitalic_K meson systems,” Phys. Rev. D 73 (2006) 016003, arXiv:hep-ph/0511100.
- P. B. Pal, “The Strong CP question in SU(3)(C) x SU(3)(L) x U(1)(N) models,” Phys. Rev. D 52 (1995) 1659–1662, arXiv:hep-ph/9411406.
- A. G. Dias, V. Pleitez, and M. D. Tonasse, “Naturally light invisible axion in models with large local discrete symmetries,” Phys. Rev. D 67 (2003) 095008, arXiv:hep-ph/0211107.
- A. G. Dias and V. Pleitez, “Stabilizing the invisible axion in 3-3-1 models,” Phys. Rev. D 69 (2004) 077702, arXiv:hep-ph/0308037.
- A. G. Dias, C. A. de S. Pires, and P. S. Rodrigues da Silva, “Discrete symmetries, invisible axion and lepton number symmetry in an economic 3 3 1 model,” Phys. Rev. D 68 (2003) 115009, arXiv:hep-ph/0309058.
- J. K. Mizukoshi, C. A. de S. Pires, F. S. Queiroz, and P. S. Rodrigues da Silva, “WIMPs in a 3-3-1 model with heavy Sterile neutrinos,” Phys. Rev. D 83 (2011) 065024, arXiv:1010.4097 [hep-ph].
- A. G. Dias, C. A. de S. Pires, and P. S. Rodrigues da Silva, “The Left-Right SU(3)(L)xSU(3)(R)xU(1)(X) Model with Light, keV and Heavy Neutrinos,” Phys. Rev. D 82 (2010) 035013, arXiv:1003.3260 [hep-ph].
- J. D. Ruiz-Alvarez, C. A. de S. Pires, F. S. Queiroz, D. Restrepo, and P. S. Rodrigues da Silva, “On the Connection of Gamma-Rays, Dark Matter and Higgs Searches at LHC,” Phys. Rev. D 86 (2012) 075011, arXiv:1206.5779 [hep-ph].
- D. Cogollo, A. X. Gonzalez-Morales, F. S. Queiroz, and P. R. Teles, “Excluding the Light Dark Matter Window of a 331 Model Using LHC and Direct Dark Matter Detection Data,” JCAP 11 (2014) 002, arXiv:1402.3271 [hep-ph].
- P. S. Rodrigues da Silva, “A Brief Review on WIMPs in 331 Electroweak Gauge Models,” Phys. Int. 7 no. 1, (2016) 15–27, arXiv:1412.8633 [hep-ph].
- R. Mohapatra and J. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Phys. Rev. D 34 (1986) 1642.
- E. K. Akhmedov, M. Lindner, E. Schnapka, and J. W. F. Valle, “Left-right symmetry breaking in NJL approach,” Phys. Lett. B 368 (1996) 270–280, arXiv:hep-ph/9507275.
- E. K. Akhmedov, M. Lindner, E. Schnapka, and J. W. F. Valle, “Dynamical left-right symmetry breaking,” Phys. Rev. D 53 (1996) 2752–2780, arXiv:hep-ph/9509255.
- M. Malinsky, J. C. Romao, and J. W. F. Valle, “Novel supersymmetric SO(10) seesaw mechanism,” Phys. Rev. Lett. 95 (2005) 161801, arXiv:hep-ph/0506296.
- A. Pilaftsis, “CP violation and baryogenesis due to heavy Majorana neutrinos,” Phys. Rev. D 56 (1997) 5431–5451, arXiv:hep-ph/9707235.
- P.-H. Gu and U. Sarkar, “Leptogenesis with Linear, Inverse or Double Seesaw,” Phys. Lett. B 694 (2011) 226–232, arXiv:1007.2323 [hep-ph].
- M. J. Dolan, T. P. Dutka, and R. R. Volkas, “Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model,” JCAP 06 (2018) 012, arXiv:1802.08373 [hep-ph].
- C. Dib, S. Kovalenko, I. Schmidt, and A. Smetana, “Low-scale seesaw from neutrino condensation,” Nucl. Phys. B 952 (2020) 114910, arXiv:1904.06280 [hep-ph].
- S. Blanchet, T. Hambye, and F.-X. Josse-Michaux, “Reconciling leptogenesis with observable mu —>>> e gamma rates,” JHEP 04 (2010) 023, arXiv:0912.3153 [hep-ph].
- S. Blanchet, P. S. B. Dev, and R. N. Mohapatra, “Leptogenesis with TeV Scale Inverse Seesaw in SO(10),” Phys. Rev. D 82 (2010) 115025, arXiv:1010.1471 [hep-ph].
- A. E. C. Hernández, D. T. Huong, and I. Schmidt, “Universal inverse seesaw mechanism as a source of the SM fermion mass hierarchy,” Eur. Phys. J. C 82 no. 1, (2022) 63, arXiv:2109.12118 [hep-ph].
- A. E. C. Hernández, C. Espinoza, J. C. Gómez-Izquierdo, and M. Mondragón, “Fermion masses and mixings, dark matter, leptogenesis and g−2𝑔2g-2italic_g - 2 muon anomaly in an extended 2HDM with inverse seesaw,” Eur. Phys. J. Plus 137 no. 11, (2022) 1224, arXiv:2104.02730 [hep-ph].
- A. E. C. Hernández and I. Schmidt, “A renormalizable left-right symmetric model with low scale seesaw mechanisms,” Nucl. Phys. B 976 (2022) 115696, arXiv:2101.02718 [hep-ph].
- A. Abada, N. Bernal, A. E. Cárcamo Hernández, S. Kovalenko, and T. B. de Melo, “Three-Loop Inverse Scotogenic Seesaw Models,” arXiv:2312.14105 [hep-ph].
- A. E. Cárcamo Hernández, R. Martinez, and F. Ochoa, “Fermion masses and mixings in the 3-3-1 model with right-handed neutrinos based on the S3subscript𝑆3S_{3}italic_S start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT flavor symmetry,” Eur. Phys. J. C 76 no. 11, (2016) 634, arXiv:1309.6567 [hep-ph].
- A. E. Cárcamo Hernández, S. Kovalenko, H. N. Long, and I. Schmidt, “A variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern,” JHEP 07 (2018) 144, arXiv:1705.09169 [hep-ph].
- A. E. Cárcamo Hernández, H. N. Long, and V. V. Vien, “The first Δ(27)Δ27\Delta(27)roman_Δ ( 27 ) flavor 3-3-1 model with low scale seesaw mechanism,” Eur. Phys. J. C 78 no. 10, (2018) 804, arXiv:1803.01636 [hep-ph].
- A. E. Cárcamo Hernández, N. A. Pérez-Julve, and Y. Hidalgo Velásquez, “Fermion masses and mixings and some phenomenological aspects of a 3-3-1 model with linear seesaw mechanism,” Phys. Rev. D 100 no. 9, (2019) 095025, arXiv:1907.13083 [hep-ph].
- A. E. Cárcamo Hernández, Y. Hidalgo Velásquez, and N. A. Pérez-Julve, “A 3-3-1 model with low scale seesaw mechanisms,” Eur. Phys. J. C 79 no. 10, (2019) 828, arXiv:1905.02323 [hep-ph].
- A. E. Cárcamo Hernández, D. T. Huong, and H. N. Long, “Minimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,” Phys. Rev. D 102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
- A. E. Cárcamo Hernández, J. W. F. Valle, and C. A. Vaquera-Araujo, “Simple theory for scotogenic dark matter with residual matter-parity,” Phys. Lett. B 809 (2020) 135757, arXiv:2006.06009 [hep-ph].
- A. E. Cárcamo Hernández, S. Kovalenko, F. S. Queiroz, and Y. S. Villamizar, “An extended 3-3-1 model with radiative linear seesaw mechanism,” Phys. Lett. B 829 (2022) 137082, arXiv:2105.01731 [hep-ph].
- A. E. C. Hernández, C. Hati, S. Kovalenko, J. W. F. Valle, and C. A. Vaquera-Araujo, “Scotogenic neutrino masses with gauged matter parity and gauge coupling unification,” JHEP 03 (2022) 034, arXiv:2109.05029 [hep-ph].
- M. Malinsky, T. Ohlsson, Z.-z. Xing, and H. Zhang, “Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model,” Phys. Lett. B 679 (2009) 242–248, arXiv:0905.2889 [hep-ph].
- A. Abada and M. Lucente, “Looking for the minimal inverse seesaw realisation,” Nucl. Phys. B 885 (2014) 651–678, arXiv:1401.1507 [hep-ph].
- F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, “Neutrinos and Collider Physics,” New J. Phys. 17 no. 7, (2015) 075019, arXiv:1502.06541 [hep-ph].
- A. Abada, N. Bernal, A. E. C. Hernández, X. Marcano, and G. Piazza, “Gauged inverse seesaw from dark matter,” Eur. Phys. J. C 81 no. 8, (2021) 758, arXiv:2107.02803 [hep-ph].
- C. Bonilla, A. E. Carcamo Hernandez, S. Kovalenko, H. Lee, R. Pasechnik, and I. Schmidt, “Fermion mass hierarchy in an extended left-right symmetric model,” JHEP 12 (2023) 075, arXiv:2305.11967 [hep-ph].
- C. Bonilla, A. E. Carcamo Hernandez, B. Saez Dıaz, S. Kovalenko, and J. Marchant Gonzalez, “Dark matter from a radiative inverse seesaw majoron model,” Phys. Lett. B 847 (2023) 138282, arXiv:2306.08453 [hep-ph].
- D. Chang and H. N. Long, “Interesting radiative patterns of neutrino mass in an SU(3)(C) x SU(3)(L) x U(1)(X) model with right-handed neutrinos,” Phys. Rev. D 73 (2006) 053006, arXiv:hep-ph/0603098.
- J. Herrero-Garcia, M. Nebot, N. Rius, and A. Santamaria, “The Zee–Babu model revisited in the light of new data,” Nucl. Phys. B 885 (2014) 542–570, arXiv:1402.4491 [hep-ph].
- K. L. McDonald and B. H. J. McKellar, “Evaluating the two loop diagram responsible for neutrino mass in Babu’s model,” arXiv:hep-ph/0309270.
- V. H. Binh, D. T. Binh, A. E. Cárcamo Hernández, D. T. Huong, D. V. Soa, and H. N. Long, “Higgs sector phenomenology in the 3-3-1 model with an axionlike particle,” Phys. Rev. D 107 no. 9, (2023) 095030, arXiv:2007.05004 [hep-ph].
- ATLAS, CMS Collaboration, G. Aad et al., “Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV,” JHEP 08 (2016) 045, arXiv:1606.02266 [hep-ex].
- 1990.
- M. Blennow, E. Fernández-Martínez, J. Hernández-García, J. López-Pavón, X. Marcano, and D. Naredo-Tuero, “Bounds on lepton non-unitarity and heavy neutrino mixing,” JHEP 08 (2023) 030, arXiv:2306.01040 [hep-ph].
- R. A. Diaz, R. Martinez, and J. A. Rodriguez, “Phenomenology of lepton flavor violation in 2HDM(3) from (g-2)(mu) and leptonic decays,” Phys. Rev. D67 (2003) 075011, arXiv:hep-ph/0208117 [hep-ph].
- F. Jegerlehner and A. Nyffeler, “The Muon g-2,” Phys. Rept. 477 (2009) 1–110, arXiv:0902.3360 [hep-ph].
- C. Kelso, H. N. Long, R. Martinez, and F. S. Queiroz, “Connection of g−2μ𝑔subscript2𝜇g-2_{\mu}italic_g - 2 start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, electroweak, dark matter, and collider constraints on 331 models,” Phys. Rev. D90 no. 11, (2014) 113011, arXiv:1408.6203 [hep-ph].
- M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” Phys. Rept. 731 (2018) 1–82, arXiv:1610.06587 [hep-ph].
- K. Kowalska and E. M. Sessolo, “Expectations for the muon g-2 in simplified models with dark matter,” JHEP 09 (2017) 112, arXiv:1707.00753 [hep-ph].
- Muon g-2 Collaboration, D. P. Aguillard et al., “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm,” Phys. Rev. Lett. 131 no. 16, (2023) 161802, arXiv:2308.06230 [hep-ex].
- L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588 no. 7836, (2020) 61–65.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.