Fermion mass hierarchy in an extended left-right symmetric model (2305.11967v2)
Abstract: We present a Left-Right symmetric model that provides an explanation for the mass hierarchy of the charged fermions within the framework of the Standard Model. This explanation is achieved through the utilization of both tree-level and radiative seesaw mechanisms. In this model, the tiny masses of the light active neutrinos are generated via a three-loop radiative inverse seesaw mechanism, with Dirac and Majorana submatrices arising at one-loop level. To the best of our knowledge, this is the first example of the inverse seesaw mechanism being implemented with both submatrices generated at one-loop level. The model contains a global $U(1)_{X}$ symmetry which, after its spontaneous breaking, allows for the stabilization of the Dark Matter (DM) candidates. We show that the electroweak precision observables, the electron and muon anomalous magnetic moments as well as the Charged Lepton Flavor Violating decays, $\mu \rightarrow e \gamma$, are consistent with the current experimental limits. In addition, we analyze the implications of the model for the $95$ GeV diphoton excess recently reported by the CMS collaboration and demonstrate that such anomaly could be easily accommodated. Finally, we discuss qualitative aspects of DM in the considered model.
- A. Davidson and K. C. Wali, âUniversal Seesaw Mechanism?,â Phys. Rev. Lett. 59 (1987) 393.
- E. Ma, âRadiative inverse seesaw mechanism for nonzero neutrino mass,â Phys. Rev. D 80 (2009) 013013, arXiv:0904.4450 [hep-ph].
- S. S. C. Law and K. L. McDonald, âInverse seesaw and dark matter in models with exotic lepton triplets,â Phys. Lett. B 713 (2012) 490â494, arXiv:1204.2529 [hep-ph].
- A. Ahriche, S. M. Boucenna, and S. Nasri, âDark Radiative Inverse Seesaw Mechanism,â Phys. Rev. D 93 no. 7, (2016) 075036, arXiv:1601.04336 [hep-ph].
- A. E. CĂĄrcamo HernĂĄndez and H. N. Long, âA highly predictive A4subscriptđ´4A_{4}italic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT flavour 3-3-1 model with radiative inverse seesaw mechanism,â J. Phys. G 45 no. 4, (2018) 045001, arXiv:1705.05246 [hep-ph].
- A. E. CĂĄrcamo HernĂĄndez, S. Kovalenko, H. N. Long, and I. Schmidt, âA variant of 3-3-1 model for the generation of the SM fermion mass and mixing pattern,â JHEP 07 (2018) 144, arXiv:1705.09169 [hep-ph].
- A. E. CĂĄrcamo HernĂĄndez, S. Kovalenko, J. W. F. Valle, and C. A. Vaquera-Araujo, âNeutrino predictions from a left-right symmetric flavored extension of the standard model,â JHEP 02 (2019) 065, arXiv:1811.03018 [hep-ph].
- S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, âDark matter as the origin of neutrino mass in the inverse seesaw mechanism,â Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].
- A. E. CĂĄrcamo HernĂĄndez, D. T. Huong, and H. N. Long, âMinimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,â Phys. Rev. D 102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
- A. Abada, N. Bernal, A. E. C. HernĂĄndez, X. Marcano, and G. Piazza, âGauged inverse seesaw from dark matter,â Eur. Phys. J. C 81 no. 8, (2021) 758, arXiv:2107.02803 [hep-ph].
- A. E. C. HernĂĄndez, C. Espinoza, J. C. GĂłmez-Izquierdo, and M. MondragĂłn, âFermion masses and mixings, dark matter, leptogenesis and gâ2đ2g-2italic_g - 2 muon anomaly in an extended 2HDM with inverse seesaw,â Eur. Phys. J. Plus 137 no. 11, (2022) 1224, arXiv:2104.02730 [hep-ph].
- A. E. C. HernĂĄndez, D. T. Huong, and I. Schmidt, âUniversal inverse seesaw mechanism as a source of the SM fermion mass hierarchy,â Eur. Phys. J. C 82 no. 1, (2022) 63, arXiv:2109.12118 [hep-ph].
- A. E. C. HernĂĄndez and I. Schmidt, âA renormalizable left-right symmetric model with low scale seesaw mechanisms,â Nucl. Phys. B 976 (2022) 115696, arXiv:2101.02718 [hep-ph].
- W. Dekens and D. Boer, âViability of minimal leftâright models with discrete symmetries,â Nucl. Phys. B889 (2014) 727â756, arXiv:1409.4052 [hep-ph].
- T. Nomura, H. Okada, and Y. Orikasa, âRadiative neutrino mass in alternative leftâright model,â Eur. Phys. J. C77 no. 2, (2017) 103, arXiv:1602.08302 [hep-ph].
- V. Brdar and A. Y. Smirnov, âLow Scale Left-Right Symmetry and Naturally Small Neutrino Mass,â JHEP 02 (2019) 045, arXiv:1809.09115 [hep-ph].
- E. Ma, âUniversal Scotogenic Fermion Masses in Left-Right Gauge Model,â Nucl. Phys. B967 (2021) 115406, arXiv:2012.03128 [hep-ph].
- K. S. Babu and A. Thapa, âLeft-Right Symmetric Model without Higgs Triplets,â arXiv:2012.13420 [hep-ph].
- ATLAS Collaboration, M. Aaboud et al., âSearch for large missing transverse momentum in association with one top-quark in proton-proton collisions at sđ \sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,â JHEP 05 (2019) 041, arXiv:1812.09743 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., âSearch for new phenomena in events with same-charge leptons and bđbitalic_b-jets in pâ˘pđđppitalic_p italic_p collisions at s=13đ 13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,â JHEP 12 (2018) 039, arXiv:1807.11883 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., âSearch for pair production of heavy vector-like quarks decaying into hadronic final states in pâ˘pđđppitalic_p italic_p collisions at s=13đ 13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,â Phys. Rev. D 98 no. 9, (2018) 092005, arXiv:1808.01771 [hep-ex].
- ATLAS Collaboration, M. Aaboud et al., âSearch for pair production of heavy vector-like quarks decaying to high-pTđ{}_{T}start_FLOATSUBSCRIPT italic_T end_FLOATSUBSCRIPT W bosons and b quarks in the lepton-plus-jets final state in pp collisions at s=13đ 13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,â JHEP 10 (2017) 141, arXiv:1707.03347 [hep-ex].
- ATLAS Collaboration, G. Aad et al., âSearch for single production of vector-like quarks decaying into Wb in pp collisions at s=8đ 8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,â Eur. Phys. J. C 76 no. 8, (2016) 442, arXiv:1602.05606 [hep-ex].
- ATLAS Collaboration, G. Aad et al., âSearch for production of vector-like quark pairs and of four top quarks in the lepton-plus-jets final state in pâ˘pđđppitalic_p italic_p collisions at s=8đ 8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,â JHEP 08 (2015) 105, arXiv:1505.04306 [hep-ex].
- ATLAS Collaboration, G. Aad et al., âSearch for pair production of a new heavy quark that decays into a WđWitalic_W boson and a light quark in pâ˘pđđppitalic_p italic_p collisions at s=8đ 8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector,â Phys. Rev. D 92 no. 11, (2015) 112007, arXiv:1509.04261 [hep-ex].
- ATLAS Collaboration, G. Aad et al., âSearch for heavy vector-like quarks coupling to light quarks in proton-proton collisions at s=7đ 7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV with the ATLAS detector,â Phys. Lett. B 712 (2012) 22â39, arXiv:1112.5755 [hep-ex].
- F. F. Freitas, J. a. Gonçalves, A. P. Morais, and R. Pasechnik, âPhenomenology at the large hadron collider with deep learning: the case of vector-like quarks decaying to light jets,â Eur. Phys. J. C 82 no. 9, (2022) 826, arXiv:2204.12542 [hep-ph].
- F. F. Freitas, J. a. Gonçalves, A. P. Morais, and R. Pasechnik, âPhenomenology of vector-like leptons with Deep Learning at the Large Hadron Collider,â JHEP 01 (2021) 076, arXiv:2010.01307 [hep-ph].
- A. P. Morais, A. Onofre, F. F. Freitas, J. a. Gonçalves, R. Pasechnik, and R. Santos, âDeep learning searches for vector-like leptons at the LHC and electron/muon colliders,â Eur. Phys. J. C 83 no. 3, (2023) 232, arXiv:2108.03926 [hep-ph].
- Z.-z. Xing, âFlavor structures of charged fermions and massive neutrinos,â Phys. Rept. 854 (2020) 1â147, arXiv:1909.09610 [hep-ph].
- Particle Data Group Collaboration, R. L. Workman et al., âReview of Particle Physics,â PTEP 2022 (2022) 083C01.
- A. E. CĂĄrcamo HernĂĄndez, S. Kovalenko, and I. Schmidt, âRadiatively generated hierarchy of lepton and quark masses,â JHEP 02 (2017) 125, arXiv:1611.09797 [hep-ph].
- M. E. Peskin and T. Takeuchi, âEstimation of oblique electroweak corrections,â Phys. Rev. D 46 (1992) 381â409.
- G. Altarelli and R. Barbieri, âVacuum polarization effects of new physics on electroweak processes,â Phys. Lett. B 253 (1991) 161â167.
- R. Barbieri, A. Pomarol, R. Rattazzi, and A. Strumia, âElectroweak symmetry breaking after LEP-1 and LEP-2,â Nucl. Phys. B 703 (2004) 127â146, arXiv:hep-ph/0405040.
- A. E. CĂĄrcamo HernĂĄndez, S. Kovalenko, and I. Schmidt, âPrecision measurements constraints on the number of Higgs doublets,â Phys. Rev. D 91 (2015) 095014, arXiv:1503.03026 [hep-ph].
- A. S. Adam, A. Ferdiyan, and M. Satriawan, âA New Left-Right Symmetry Model,â Adv. High Energy Phys. 2020 (2020) 3090783, arXiv:1903.03370 [hep-ph].
- C.-T. Lu, L. Wu, Y. Wu, and B. Zhu, âElectroweak precision fit and new physics in light of the W boson mass,â Phys. Rev. D 106 no. 3, (2022) 035034, arXiv:2204.03796 [hep-ph].
- R. A. Diaz, R. Martinez, and J. A. Rodriguez, âPhenomenology of lepton flavor violation in 2HDM(3) from (g-2)(mu) and leptonic decays,â Phys. Rev. D67 (2003) 075011, arXiv:hep-ph/0208117 [hep-ph].
- F. Jegerlehner and A. Nyffeler, âThe Muon g-2,â Phys. Rept. 477 (2009) 1â110, arXiv:0902.3360 [hep-ph].
- C. Kelso, H. N. Long, R. Martinez, and F. S. Queiroz, âConnection of gâ2Îźđsubscript2đg-2_{\mu}italic_g - 2 start_POSTSUBSCRIPT italic_Îź end_POSTSUBSCRIPT, electroweak, dark matter, and collider constraints on 331 models,â Phys. Rev. D90 no. 11, (2014) 113011, arXiv:1408.6203 [hep-ph].
- M. Lindner, M. Platscher, and F. S. Queiroz, âA Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,â Phys. Rept. 731 (2018) 1â82, arXiv:1610.06587 [hep-ph].
- K. Kowalska and E. M. Sessolo, âExpectations for the muon g-2 in simplified models with dark matter,â JHEP 09 (2017) 112, arXiv:1707.00753 [hep-ph].
- Muon g-2 Collaboration, B. Abi et al., âMeasurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,â Phys. Rev. Lett. 126 no. 14, (2021) 141801, arXiv:2104.03281 [hep-ex].
- L. Morel, Z. Yao, P. CladĂŠ, and S. Guellati-KhĂŠlifa, âDetermination of the fine-structure constant with an accuracy of 81 parts per trillion,â Nature 588 no. 7836, (2020) 61â65.
- J. A. Casas and A. Ibarra, âOscillating neutrinos and Îźâe,Îłâđđđž\mu\to e,\gammaitalic_Îź â italic_e , italic_Îł,â Nucl. Phys. B 618 (2001) 171â204, arXiv:hep-ph/0103065.
- A. Ibarra and G. G. Ross, âNeutrino phenomenology: The Case of two right-handed neutrinos,â Phys. Lett. B 591 (2004) 285â296, arXiv:hep-ph/0312138.
- CMS Collaboration, âSearch for a standard model-like Higgs boson in the mass range between 70 and 110GeVGeV\leavevmode\nobreak\ \mathrm{GeV}roman_GeV in the diphoton final state in proton-proton collisions at s=13â˘TeVđ 13TeV\sqrt{s}=13\leavevmode\nobreak\ \mathrm{TeV}square-root start_ARG italic_s end_ARG = 13 roman_TeV,â tech. rep., CERN, Geneva, 2023. https://cds.cern.ch/record/2852907.
- T. BiekĂśtter, S. Heinemeyer, and G. Weiglein, âThe CMS di-photon excess at 95 GeV in view of the LHC Run 2 results,â arXiv:2303.12018 [hep-ph].
- A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, âParton distributions for the LHC,â Eur. Phys. J. C 63 (2009) 189â285, arXiv:0901.0002 [hep-ph].
- P. Langacker and D. London, âLepton Number Violation and Massless Nonorthogonal Neutrinos,â Phys. Rev. D 38 (1988) 907.
- L. Lavoura, âGeneral formulae for fâ˘(1)âfâ˘(2)+Îłâđ1đ2đžf(1)\to f(2)+\gammaitalic_f ( 1 ) â italic_f ( 2 ) + italic_Îł,â Eur. Phys. J. C 29 (2003) 191â195, arXiv:hep-ph/0302221.
- L. T. Hue, L. D. Ninh, T. T. Thuc, and N. T. T. Dat, âExact one-loop results for liâljâ˘Îłâsubscriptđđsubscriptđđđžl_{i}\to l_{j}\gammaitalic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT â italic_l start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_Îł in 3-3-1 models,â Eur. Phys. J. C 78 no. 2, (2018) 128, arXiv:1708.09723 [hep-ph].
- M. E. Catano, R. Martinez, and F. Ochoa, âNeutrino masses in a 331 model with right-handed neutrinos without doubly charged Higgs bosons via inverse and double seesaw mechanisms,â Phys. Rev. D86 (2012) 073015, arXiv:1206.1966 [hep-ph].
- Y. Kuno and Y. Okada, âMuon decay and physics beyond the standard model,â Rev. Mod. Phys. 73 (2001) 151â202, arXiv:hep-ph/9909265.
- C. P. Burgess, M. Pospelov, and T. ter Veldhuis, âThe Minimal model of nonbaryonic dark matter: A Singlet scalar,â Nucl. Phys. B 619 (2001) 709â728, arXiv:hep-ph/0011335.
- J. A. Casas, D. G. CerdeĂąo, J. M. Moreno, and J. Quilis, âReopening the Higgs portal for single scalar dark matter,â JHEP 05 (2017) 036, arXiv:1701.08134 [hep-ph].
- S. Bhattacharya, P. Poulose, and P. Ghosh, âMultipartite Interacting Scalar Dark Matter in the light of updated LUX data,â JCAP 04 (2017) 043, arXiv:1607.08461 [hep-ph].
- J. Edsjo and P. Gondolo, âNeutralino relic density including coannihilations,â Phys. Rev. D 56 (1997) 1879â1894, arXiv:hep-ph/9704361.
- Planck Collaboration, N. Aghanim et al., âPlanck 2018 results. VI. Cosmological parameters,â Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- XENON Collaboration, E. Aprile et al., âDark Matter Search Results from a One Ton-Year Exposure of XENON1T,â Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].
- M. Farina, D. Pappadopulo, and A. Strumia, âCDMS stands for Constrained Dark Matter Singlet,â Phys. Lett. B 688 (2010) 329â331, arXiv:0912.5038 [hep-ph].
- J. Giedt, A. W. Thomas, and R. D. Young, âDark matter, the CMSSM and lattice QCD,â Phys. Rev. Lett. 103 (2009) 201802, arXiv:0907.4177 [hep-ph].
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.