Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Three-Loop Inverse Scotogenic Seesaw Models (2312.14105v2)

Published 21 Dec 2023 in hep-ph

Abstract: We propose a class of models providing an explanation of the origin of light neutrino masses, the baryon asymmetry of the Universe via leptogenesis and offering viable dark matter candidates. In these models the Majorana masses of the active neutrino are generated by the inverse seesaw mechanism with the lepton number violating right-handed Majorana neutrino masses $\mu$ arising at three loops. The latter is ensured by the preserved discrete symmetries, which also guarantee the stability of the dark matter candidate. We focus on one of these models and perform a detailed analysis of the phenomenology of its leptonic sector. The model can successfully accommodate baryogenesis through leptogenesis in both weak and strong washout regimes. The lightest heavy fermion turns out to be a viable dark matter candidate, provided that the entries of the Majorana submatrix $\mu$ are in the keV to MeV range. The solutions are consistent with the experimental constraints, accommodating both mass orderings for active neutrinos, in particular charged-lepton flavor violating decays $\mu\to e\gamma$, $\mu\to eee$, and the electron-muon conversion processes get sizable rates within future sensitivity reach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. Y. Cai, J. Herrero-García, M. A. Schmidt, A. Vicente, and R. R. Volkas, “From the trees to the forest: a review of radiative neutrino mass models,” Front. in Phys. 5 (2017) 63, arXiv:1706.08524 [hep-ph].
  2. S. Jana, P. K. Vishnu, and S. Saad, “Minimal realizations of Dirac neutrino mass from generic one-loop and two-loop topologies at d=5𝑑5d=5italic_d = 5,” JCAP 04 (2020) 018, arXiv:1910.09537 [hep-ph].
  3. C. Arbeláez, R. Cepedello, J. C. Helo, M. Hirsch, and S. Kovalenko, “How many 1-loop neutrino mass models are there?,” JHEP 08 (2022) 023, arXiv:2205.13063 [hep-ph].
  4. C. Bonilla, E. Ma, E. Peinado, and J. W. F. Valle, “Two-loop Dirac neutrino mass and WIMP dark matter,” Phys. Lett. B 762 (2016) 214–218, arXiv:1607.03931 [hep-ph].
  5. S. Baek, H. Okada, and Y. Orikasa, “A Two Loop Radiative Neutrino Model,” Nucl. Phys. B 941 (2019) 744–754, arXiv:1703.00685 [hep-ph].
  6. S. Saad, “Origin of a two-loop neutrino mass from S⁢U⁢(5)𝑆𝑈5SU(5)italic_S italic_U ( 5 ) grand unification,” Phys. Rev. D 99 no. 11, (2019) 115016, arXiv:1902.11254 [hep-ph].
  7. T. Nomura and H. Okada, “A two loop induced neutrino mass model with modular A4subscript𝐴4A_{4}italic_A start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT symmetry,” Nucl. Phys. B 966 (2021) 115372, arXiv:1906.03927 [hep-ph].
  8. C. Arbeláez, A. E. Cárcamo Hernández, R. Cepedello, M. Hirsch, and S. Kovalenko, “Radiative type-I seesaw neutrino masses,” Phys. Rev. D 100 no. 11, (2019) 115021, arXiv:1910.04178 [hep-ph].
  9. S. Saad, “Combined explanations of (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT, RD(*)subscript𝑅superscript𝐷R_{D^{(*)}}italic_R start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT, RK(*)subscript𝑅superscript𝐾R_{K^{(*)}}italic_R start_POSTSUBSCRIPT italic_K start_POSTSUPERSCRIPT ( * ) end_POSTSUPERSCRIPT end_POSTSUBSCRIPT anomalies in a two-loop radiative neutrino mass model,” Phys. Rev. D 102 no. 1, (2020) 015019, arXiv:2005.04352 [hep-ph].
  10. Z.-z. Xing and D. Zhang, “On the two-loop radiative origin of the smallest neutrino mass and the associated Majorana CP phase,” Phys. Lett. B 807 (2020) 135598, arXiv:2005.05171 [hep-ph].
  11. C.-H. Chen and T. Nomura, “Two-loop radiative seesaw, muon g−2𝑔2g-2italic_g - 2, and τ𝜏\tauitalic_τ-lepton-flavor violation with DM constraints,” JHEP 09 (2021) 090, arXiv:2001.07515 [hep-ph].
  12. T. Nomura, H. Okada, and Y. Uesaka, “A two-loop induced neutrino mass model, dark matter, and LFV processes ℓi→ℓj⁢γ→subscriptℓ𝑖subscriptℓ𝑗𝛾\ell_{i}\to\ell_{j}\gammaroman_ℓ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT → roman_ℓ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_γ, and μ⁢e→e⁢e→𝜇𝑒𝑒𝑒\mu e\to eeitalic_μ italic_e → italic_e italic_e in a hidden local U⁢(1)𝑈1U(1)italic_U ( 1 ) symmetry,” Nucl. Phys. B 962 (2021) 115236, arXiv:2008.02673 [hep-ph].
  13. L. M. Krauss, S. Nasri, and M. Trodden, “A Model for neutrino masses and dark matter,” Phys. Rev. D 67 (2003) 085002, arXiv:hep-ph/0210389.
  14. M. Aoki, S. Kanemura, and O. Seto, “Neutrino mass, Dark Matter and Baryon Asymmetry via TeV-Scale Physics without Fine-Tuning,” Phys. Rev. Lett. 102 (2009) 051805, arXiv:0807.0361 [hep-ph].
  15. Y. Kajiyama, H. Okada, and K. Yagyu, “T7subscript𝑇7T_{7}italic_T start_POSTSUBSCRIPT 7 end_POSTSUBSCRIPT Flavor Model in Three Loop Seesaw and Higgs Phenomenology,” JHEP 10 (2013) 196, arXiv:1307.0480 [hep-ph].
  16. A. Ahriche, C.-S. Chen, K. L. McDonald, and S. Nasri, “Three-loop model of neutrino mass with dark matter,” Phys. Rev. D 90 (2014) 015024, arXiv:1404.2696 [hep-ph].
  17. A. Ahriche, K. L. McDonald, and S. Nasri, “A Model of Radiative Neutrino Mass: with or without Dark Matter,” JHEP 10 (2014) 167, arXiv:1404.5917 [hep-ph].
  18. H. Hatanaka, K. Nishiwaki, H. Okada, and Y. Orikasa, “A Three-Loop Neutrino Model with Global U⁢(1)𝑈1U(1)italic_U ( 1 ) Symmetry,” Nucl. Phys. B 894 (2015) 268–283, arXiv:1412.8664 [hep-ph].
  19. C.-S. Chen, K. L. McDonald, and S. Nasri, “A Class of Three-Loop Models with Neutrino Mass and Dark Matter,” Phys. Lett. B 734 (2014) 388–393, arXiv:1404.6033 [hep-ph].
  20. L.-G. Jin, R. Tang, and F. Zhang, “A three-loop radiative neutrino mass model with dark matter,” Phys. Lett. B 741 (2015) 163–167, arXiv:1501.02020 [hep-ph].
  21. H. Okada and K. Yagyu, “Three-loop neutrino mass model with doubly charged particles from isodoublets,” Phys. Rev. D 93 no. 1, (2016) 013004, arXiv:1508.01046 [hep-ph].
  22. K. Nishiwaki, H. Okada, and Y. Orikasa, “Three loop neutrino model with isolated k±±superscript𝑘plus-or-minusabsentplus-or-minusk^{\pm\pm}italic_k start_POSTSUPERSCRIPT ± ± end_POSTSUPERSCRIPT,” Phys. Rev. D 92 no. 9, (2015) 093013, arXiv:1507.02412 [hep-ph].
  23. A. Ahriche, K. L. McDonald, S. Nasri, and T. Toma, “A Model of Neutrino Mass and Dark Matter with an Accidental Symmetry,” Phys. Lett. B 746 (2015) 430–435, arXiv:1504.05755 [hep-ph].
  24. A. E. Cárcamo Hernández, “A novel and economical explanation for SM fermion masses and mixings,” Eur. Phys. J. C 76 no. 9, (2016) 503, arXiv:1512.09092 [hep-ph].
  25. P.-H. Gu, “High-scale leptogenesis with three-loop neutrino mass generation and dark matter,” JHEP 04 (2017) 159, arXiv:1611.03256 [hep-ph].
  26. K. Cheung, T. Nomura, and H. Okada, “A Three-loop Neutrino Model with Leptoquark Triplet Scalars,” Phys. Lett. B 768 (2017) 359–364, arXiv:1701.01080 [hep-ph].
  27. B. Dutta, S. Ghosh, I. Gogoladze, and T. Li, “Three-loop neutrino masses via new massive gauge bosons from E6subscript𝐸6E_{6}italic_E start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT GUT,” Phys. Rev. D 98 no. 5, (2018) 055028, arXiv:1805.01866 [hep-ph].
  28. A. E. Cárcamo Hernández, S. Kovalenko, R. Pasechnik, and I. Schmidt, “Sequentially loop-generated quark and lepton mass hierarchies in an extended Inert Higgs Doublet model,” JHEP 06 (2019) 056, arXiv:1901.02764 [hep-ph].
  29. R. Cepedello, M. Hirsch, P. Rocha-Morán, and A. Vicente, “Minimal 3-loop neutrino mass models and charged lepton flavor violation,” JHEP 08 (2020) 067, arXiv:2005.00015 [hep-ph].
  30. A. E. Cárcamo Hernández, S. Kovalenko, M. Maniatis, and I. Schmidt, “Fermion mass hierarchy and g−2𝑔2g-2italic_g - 2 anomalies in an extended 3HDM Model,” JHEP 10 (2021) 036, arXiv:2104.07047 [hep-ph].
  31. A. Abada, N. Bernal, A. E. Cárcamo Hernández, S. Kovalenko, T. B. de Melo, and T. Toma, “Phenomenological and cosmological implications of a scotogenic three-loop neutrino mass model,” JHEP 03 (2023) 035, arXiv:2212.06852 [hep-ph].
  32. C. Bonilla, A. E. Cárcamo Hernández, S. Kovalenko, H. Lee, R. Pasechnik, and I. Schmidt, “Fermion mass hierarchy in an extended left-right symmetric model,” JHEP 12 (2023) 075, arXiv:2305.11967 [hep-ph].
  33. A. Abada, N. Bernal, A. E. Cárcamo Hernández, S. Kovalenko, T. B. de Melo, and T. Toma, “Phenomenology of a scotogenic neutrino mass model at 3-loops,” in 18t⁢h𝑡ℎ{}^{th}start_FLOATSUPERSCRIPT italic_t italic_h end_FLOATSUPERSCRIPT International Conference on Topics in Astroparticle and Underground Physics. 11, 2023. arXiv:2311.14716 [hep-ph].
  34. CDF Collaboration, T. Aaltonen et al., “High-precision measurement of the W𝑊Witalic_W boson mass with the CDF II detector,” Science 376 no. 6589, (2022) 170–176.
  35. R. N. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” Phys. Rev. D 34 (1986) 1642.
  36. E. Ma, “Radiative inverse seesaw mechanism for nonzero neutrino mass,” Phys. Rev. D 80 (2009) 013013, arXiv:0904.4450 [hep-ph].
  37. M. Maniatis, A. von Manteuffel, O. Nachtmann, and F. Nagel, “Stability and symmetry breaking in the general two-Higgs-doublet model,” Eur. Phys. J. C 48 (2006) 805–823, arXiv:hep-ph/0605184.
  38. G. Bhattacharyya and D. Das, “Scalar sector of two-Higgs-doublet models: A minireview,” Pramana 87 no. 3, (2016) 40, arXiv:1507.06424 [hep-ph].
  39. A. Abada, N. Bernal, A. E. C. Hernández, X. Marcano, and G. Piazza, “Gauged inverse seesaw from dark matter,” Eur. Phys. J. C 81 no. 8, (2021) 758, arXiv:2107.02803 [hep-ph].
  40. A. E. Cárcamo Hernández, C. Espinoza, J. C. Gómez-Izquierdo, and M. Mondragón, “Fermion masses and mixings, dark matter, leptogenesis and g−2𝑔2g-2italic_g - 2 muon anomaly in an extended 2HDM with inverse seesaw,” Eur. Phys. J. Plus 137 no. 11, (2022) 1224, arXiv:2104.02730 [hep-ph].
  41. A. Ahriche and S. Nasri, “Dark matter and strong electroweak phase transition in a radiative neutrino mass model,” JCAP 07 (2013) 035, arXiv:1304.2055 [hep-ph].
  42. R. Cepedello Pérez, Radiative neutrino masses: A window to new physics. PhD thesis, Valencia U., IFIC, 2021. arXiv:2105.01896 [hep-ph].
  43. M. E. Catano, R. Martínez, and F. Ochoa, “Neutrino masses in a 331 model with right-handed neutrinos without doubly charged Higgs bosons via inverse and double seesaw mechanisms,” Phys. Rev. D 86 (2012) 073015, arXiv:1206.1966 [hep-ph].
  44. J. A. Casas and A. Ibarra, “Oscillating neutrinos and μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ,” Nucl. Phys. B 618 (2001) 171–204, arXiv:hep-ph/0103065.
  45. A. Das and N. Okada, “Inverse seesaw neutrino signatures at the LHC and ILC,” Phys. Rev. D 88 (2013) 113001, arXiv:1207.3734 [hep-ph].
  46. M. J. Dolan, T. P. Dutka, and R. R. Volkas, “Dirac-Phase Thermal Leptogenesis in the extended Type-I Seesaw Model,” JCAP 06 (2018) 012, arXiv:1802.08373 [hep-ph].
  47. I. Cordero-Carrión, M. Hirsch, and A. Vicente, “Master Majorana neutrino mass parametrization,” Phys. Rev. D 99 no. 7, (2019) 075019, arXiv:1812.03896 [hep-ph].
  48. A. Ibarra and G. G. Ross, “Neutrino phenomenology: The Case of two right-handed neutrinos,” Phys. Lett. B 591 (2004) 285–296, arXiv:hep-ph/0312138.
  49. I. Cordero-Carrión, M. Hirsch, and A. Vicente, “General parametrization of Majorana neutrino mass models,” Phys. Rev. D 101 no. 7, (2020) 075032, arXiv:1912.08858 [hep-ph].
  50. A. E. Cárcamo Hernández, D. T. Huong, and H. N. Long, “Minimal model for the fermion flavor structure, mass hierarchy, dark matter, leptogenesis, and the electron and muon anomalous magnetic moments,” Phys. Rev. D 102 no. 5, (2020) 055002, arXiv:1910.12877 [hep-ph].
  51. A. E. Cárcamo Hernández, D. T. Huong, and I. Schmidt, “Universal inverse seesaw mechanism as a source of the SM fermion mass hierarchy,” Eur. Phys. J. C 82 no. 1, (2022) 63, arXiv:2109.12118 [hep-ph].
  52. S. Kovalenko, Z. Lu, and I. Schmidt, “Lepton Number Violating Processes Mediated by Majorana Neutrinos at Hadron Colliders,” Phys. Rev. D 80 (2009) 073014, arXiv:0907.2533 [hep-ph].
  53. A. Faessler, M. González, S. Kovalenko, and F. Šimkovic, “Arbitrary mass Majorana neutrinos in neutrinoless double beta decay,” Phys. Rev. D 90 no. 9, (2014) 096010, arXiv:1408.6077 [hep-ph].
  54. A. Babič, S. Kovalenko, M. I. Krivoruchenko, and F. Šimkovic, “Interpolating formula for the 0⁢ν⁢β⁢β0𝜈𝛽𝛽0\nu\beta\beta0 italic_ν italic_β italic_β-decay half-life in the case of light and heavy neutrino mass mechanisms,” Phys. Rev. D 98 no. 1, (2018) 015003, arXiv:1804.04218 [hep-ph].
  55. P. Langacker and D. London, “Lepton Number Violation and Massless Nonorthogonal Neutrinos,” Phys. Rev. D 38 (1988) 907.
  56. L. Lavoura, “General formulae for f⁢(1)→f⁢(2)+γ→𝑓1𝑓2𝛾f(1)\to f(2)+\gammaitalic_f ( 1 ) → italic_f ( 2 ) + italic_γ,” Eur. Phys. J. C 29 (2003) 191–195, arXiv:hep-ph/0302221.
  57. L. T. Hue, L. D. Ninh, T. T. Thuc, and N. T. T. Dat, “Exact one-loop results for li→lj⁢γ→subscript𝑙𝑖subscript𝑙𝑗𝛾l_{i}\to l_{j}\gammaitalic_l start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT → italic_l start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_γ in 3-3-1 models,” Eur. Phys. J. C 78 no. 2, (2018) 128, arXiv:1708.09723 [hep-ph].
  58. A. E. Cárcamo Hernández, L. T. Hue, S. Kovalenko, and H. N. Long, “An extended 3-3-1 model with two scalar triplets and linear seesaw mechanism,” Eur. Phys. J. Plus 136 no. 11, (2021) 1158, arXiv:2001.01748 [hep-ph].
  59. C. Bonilla, A. E. Cárcamo Hernández, B. Saez Dıaz, S. Kovalenko, and J. Marchant Gonzalez, “Dark matter from a radiative inverse seesaw majoron model,” Phys. Lett. B 847 (2023) 138282, arXiv:2306.08453 [hep-ph].
  60. A. E. Cárcamo Hernández, V. K. N., and J. W. F. Valle, “Linear seesaw mechanism from dark sector,” JHEP 09 (2023) 046, arXiv:2305.02273 [hep-ph].
  61. A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, and J. W. F. Valle, “Phenomenology of the simplest linear seesaw mechanism,” JHEP 07 (2023) 221, arXiv:2305.00994 [hep-ph].
  62. R. Kitano, M. Koike, and Y. Okada, “Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei,” Phys. Rev. D 66 (2002) 096002, arXiv:hep-ph/0203110. [Erratum: Phys.Rev.D 76, 059902 (2007)].
  63. A. Ilakovac and A. Pilaftsis, “Flavor violating charged lepton decays in seesaw-type models,” Nucl. Phys. B 437 (1995) 491, arXiv:hep-ph/9403398.
  64. R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye, “Muon conversion to electron in nuclei in type-I seesaw models,” JHEP 01 (2013) 118, arXiv:1209.2679 [hep-ph].
  65. P.-H. Gu and U. Sarkar, “Leptogenesis with Linear, Inverse or Double Seesaw,” Phys. Lett. B 694 (2011) 226–232, arXiv:1007.2323 [hep-ph].
  66. A. Pilaftsis, “CP violation and baryogenesis due to heavy Majorana neutrinos,” Phys. Rev. D 56 (1997) 5431–5451, arXiv:hep-ph/9707235.
  67. S. Blanchet, T. Hambye, and F.-X. Josse-Michaux, “Reconciling leptogenesis with observable μ→e⁢γ→𝜇𝑒𝛾\mu\to e\gammaitalic_μ → italic_e italic_γ rates,” JHEP 04 (2010) 023, arXiv:0912.3153 [hep-ph].
  68. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  69. R. Allahverdi et al., “The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe,” Open J.Astrophys. 4 (2021) , arXiv:2006.16182 [astro-ph.CO].
  70. K. Griest and D. Seckel, “Three exceptions in the calculation of relic abundances,” Phys. Rev. D 43 (1991) 3191–3203.
  71. Particle Data Group Collaboration, R. L. Workman et al., “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  72. X. Marcano Imaz, Lepton flavor violation from low scale seesaw neutrinos with masses reachable at the LHC. PhD thesis, U. Autonoma, Madrid (main), 6, 2017. arXiv:1710.08032 [hep-ph].
  73. A. E. Cárcamo Hernández and I. Schmidt, “A renormalizable left-right symmetric model with low scale seesaw mechanisms,” Nucl. Phys. B 976 (2022) 115696, arXiv:2101.02718 [hep-ph].
  74. A. Abada, J. Kriewald, and A. M. Teixeira, “On the role of leptonic CPV phases in cLFV observables,” Eur. Phys. J. C 81 no. 11, (2021) 1016, arXiv:2107.06313 [hep-ph].
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.