Follow-Me AI: Energy-Efficient User Interaction with Smart Environments (2404.12486v2)
Abstract: This article introduces Follow-Me AI, a concept designed to enhance user interactions with smart environments, optimize energy use, and provide better control over data captured by these environments. Through AI agents that accompany users, Follow-Me AI negotiates data management based on user consent, aligns environmental controls as well as user communication and computes resources available in the environment with user preferences, and predicts user behavior to proactively adjust the smart environment. The manuscript illustrates this concept with a detailed example of Follow-Me AI in a smart campus setting, detailing the interactions with the building's management system for optimal comfort and efficiency. Finally, this article looks into the challenges and opportunities related to Follow-Me AI.
- T. Taleb, A. Ksentini, and P. A. Frangoudis, “Follow-me cloud: When cloud services follow mobile users,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 369–382, 2016.
- A. Aissioui, A. Ksentini, A. M. Gueroui, and T. Taleb, “On enabling 5g automotive systems using follow me edge-cloud concept,” IEEE Transactions on Vehicular Technology, vol. 67, no. 6, pp. 5302–5316, 2018.
- L. Lovén, E. Peltonen, L. Ruha, E. Harjula, and S. Pirttikangas, “A dark and stormy night: Reallocation storms in edge computing,” EURASIP Journal on Wireless Communications and Networking, vol. 2022, no. 1, p. 86, 2022.
- L. Lovén, R. Morabito, A. Kumar, S. Pirttikangas, J. Riekki, and S. Tarkoma, “How Can AI be Distributed in the Computing Continuum? Introducing the Neural Pub/Sub Paradigm,” arXiv preprint arXiv:2309.02058, 2023.
- L. Lovén, H. F. Shahid, L. Nguyen, E. Harjula, O. Silvén, S. Pirttikangas, and M. B. López, “Semantic slicing across the distributed intelligent 6g wireless networks,” in 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON).   IEEE, 2023, pp. 79–84.
- A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake, A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart environments using network traffic characteristics,” IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.
- N. H. Motlagh, M. A. Zaidan, L. Lovén, P. L. Fung, T. Hänninen, R. Morabito, P. Nurmi, and S. Tarkoma, “Digital twins for smart spaces-beyond iot analytics,” IEEE internet of things journal, 2023.
- N. H. Motlagh, P. Toivonen, M. A. Zaidan, E. Lagerspetz, E. Peltonen, E. Gilman, P. Nurmi, and S. Tarkoma, “Monitoring social distancing in smart spaces using infrastructure-based sensors,” in 2021 IEEE 7th World Forum on Internet of Things (WF-IoT).   IEEE, 2021, pp. 124–129.
- S. Dustdar, V. C. Pujol, and P. K. Donta, “On distributed computing continuum systems,” IEEE Transactions on Knowledge and Data Engineering, vol. 35, no. 4, pp. 4092–4105, 2023.
- I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub, “Dynamic service provisioning in the edge-cloud continuum with bounded resources,” IEEE/ACM Transactions on Networking, 2023.
- A. Zafeiropoulos, E. Fotopoulou, C. Vassilakis, I. Tzanettis, C. Lombardo, A. Carrega, and R. Bruschi, “Intent-driven distributed applications management over compute and network resources in the computing continuum,” in 2023 19th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT).   IEEE, 2023, pp. 429–436.
- A. Saleh, R. Morabito, S. Dustdar, S. Tarkoma, S. Pirttikangas, and L. Lovén, “Towards message brokers for generative ai: Survey, challenges, and opportunities,” 2024.
- D. Rosendo, A. Costan, P. Valduriez, and G. Antoniu, “Distributed intelligence on the edge-to-cloud continuum: A systematic literature review,” Journal of Parallel and Distributed Computing, vol. 166, pp. 71–94, 2022.
- P. Dhoni, “Exploring the synergy between generative ai, data and analytics in the modern age,” Authorea Preprints, 2023.
- A. Ullah, G. Qi, S. Hussain, I. Ullah, and Z. Ali, “The role of llms in sustainable smart cities: Applications, challenges, and future directions,” arXiv preprint arXiv:2402.14596, 2024.
- Y. Shen, J. Shao, X. Zhang, Z. Lin, H. Pan, D. Li, J. Zhang, and K. B. Letaief, “Large language models empowered autonomous edge ai for connected intelligence,” IEEE Communications Magazine, 2024.
- M. A. K. Raiaan, M. S. H. Mukta, K. Fatema, N. M. Fahad, S. Sakib, M. M. J. Mim, J. Ahmad, M. E. Ali, and S. Azam, “A review on large language models: Architectures, applications, taxonomies, open issues and challenges,” IEEE Access, 2024.
- T. Händler, “Balancing autonomy and alignment: A multi-dimensional taxonomy for autonomous llm-powered multi-agent architectures,” arXiv preprint arXiv:2310.03659, 2023.
- Y. Talebirad and A. Nadiri, “Multi-agent collaboration: Harnessing the power of intelligent llm agents,” arXiv preprint arXiv:2306.03314, 2023.
- H. Kokkonen, L. Lovén, N. H. Motlagh, A. Kumar, J. Partala, T. Nguyen, V. C. Pujol, P. Kostakos, T. Leppänen, A. González-Gil et al., “Autonomy and intelligence in the computing continuum: Challenges, enablers, and future directions for orchestration,” arXiv preprint arXiv:2205.01423, 2022.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.