Papers
Topics
Authors
Recent
2000 character limit reached

Miscibility of Binary Bose-Einstein Condensates with $p$-wave Interaction (2404.09294v1)

Published 14 Apr 2024 in cond-mat.quant-gas and quant-ph

Abstract: We investigate the ground-state phase diagram of a binary mixture of Bose-Einstein condensates (BECs) with competing interspecies $s$- and $p$-wave interactions. Exploiting a pseudopotential model for the $l=1$ partial wave, we derive an extended Gross-Pitaevskii (GP) equation for the BEC mixture that incorporates both $s$- and $p$-wave interactions. Based on it, we study the miscible-immiscible transition of a binary BEC mixture in the presence of interspecies $p$-wave interaction, by combining numerical solution of the GP equation and Gaussian variational analysis. Our study uncovers a dual effect -- either enhance or reduce miscibility -- of positive interspecies $p$-wave interaction, which can be precisely controlled by adjusting relevant experimental parameters. By complete characterizing the miscibility phase diagram, we establish a promising avenue towards experimental control of the miscibility of binary BEC mixtures via high partial-wave interactions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. H. Hu, J. Wang, and X.-J. Liu, Microscopic pairing theory of a binary Bose mixture with interspecies attractions: Bosonic BEC-BCS crossover and ultradilute low-dimensional quantum droplets, Phys. Rev. A 102, 043301 (2020).
  2. L. Parisi, G. E. Astrakharchik, and S. Giorgini, Liquid state of one-dimensional bose mixtures: A quantum monte carlo study, Phys. Rev. Lett. 122, 105302 (2019).
  3. T. Sowiński and M. Ángel García-March, One-dimensional mixtures of several ultracold atoms: a review, Rep. Prog. Phys. 82, 104401 (2019).
  4. H. Pu and N. P. Bigelow, Properties of two-species bose condensates, Phys. Rev. Lett. 80, 1130 (1998).
  5. Z. Li, J.-S. Pan, and W. V. Liu, Spontaneous formation of polar superfluid droplets in a p𝑝pitalic_p-wave interacting bose gas, Phys. Rev. A 100, 053620 (2019).
  6. E. Timmermans, Phase separation of bose-einstein condensates, Phys. Rev. Lett. 81, 5718 (1998).
  7. B. D. Esry and C. H. Greene, Spontaneous spatial symmetry breaking in two-component Bose-Einstein condensates, Phys. Rev. A 59, 1457 (1999).
  8. J. G. Kim and E. K. Lee, Characteristic features of symmetry breaking in two-component bose-einstein condensates, Phys. Rev. E 65, 066201 (2002).
  9. M. Pyzh and P. Schmelcher, Phase separation of a bose-bose mixture: impact of the trap and particle number imbalance, Phys. Rev. A 102, 023305 (2020).
  10. H. Wu and J. E. Thomas, Optical control of feshbach resonances in fermi gases using molecular dark states, Phys. Rev. Lett. 108, 010401 (2012).
  11. A. Viel and A. Simoni, Feshbach resonances and weakly bound molecular states of boson-boson and boson-fermion NaKNaK\mathrm{NaK}roman_NaK pairs, Phys. Rev. A 93, 042701 (2016).
  12. C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92, 040403 (2004).
  13. J. P. D’Incao and B. D. Esry, Ultracold three-body collisions near overlapping feshbach resonances, Phys. Rev. Lett. 103, 083202 (2009).
  14. K. Huang and C. N. Yang, Quantum-mechanical many-body problem with hard-sphere interaction, Phys. Rev. 105, 767 (1957).
  15. K. Huang, Statistical mechanics, 2nd edition, Statistical Mechanics  (1987).
  16. Z. Idziaszek and T. Calarco, Pseudopotential method for higher partial wave scattering, Phys. Rev. Lett. 96, 013201 (2006).
  17. Z. Idziaszek, Analytical solutions for two atoms in a harmonic trap: p𝑝pitalic_p-wave interactions, Phys. Rev. A 79, 062701 (2009).
  18. B. E. Granger and D. Blume, Tuning the interactions of spin-polarized fermions using quasi-one-dimensional confinement, Phys. Rev. Lett. 92, 133202 (2004).
  19. M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998).
  20. L. Radzihovsky and S. Choi, p𝑝pitalic_p-wave resonant bose gas: A finite-momentum spinor superfluid, Phys. Rev. Lett. 103, 095302 (2009).
  21. F. Dalfovo and S. Stringari, Bosons in anisotropic traps: Ground state and vortices, Phys. Rev. A 53, 2477 (1996).
  22. L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, Vol. 5 (Elsevier, 2013).
  23. R. N. Bisset, P. Kevrekidis, and C. Ticknor, Enhanced quantum spin fluctuations in a binary bose-einstein condensate, Phys. Rev. A 97, 023602 (2018).
  24. A. Wirthwein, S. Haas, and S.-w. Chiow, Collision Dynamics of Bose-Einstein Condensates, arXiv preprint arXiv:2203.11104  (2022).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.