Papers
Topics
Authors
Recent
2000 character limit reached

Triple Component Matrix Factorization: Untangling Global, Local, and Noisy Components (2404.07955v2)

Published 21 Mar 2024 in cs.LG, math.ST, and stat.TH

Abstract: In this work, we study the problem of common and unique feature extraction from noisy data. When we have N observation matrices from N different and associated sources corrupted by sparse and potentially gross noise, can we recover the common and unique components from these noisy observations? This is a challenging task as the number of parameters to estimate is approximately thrice the number of observations. Despite the difficulty, we propose an intuitive alternating minimization algorithm called triple component matrix factorization (TCMF) to recover the three components exactly. TCMF is distinguished from existing works in literature thanks to two salient features. First, TCMF is a principled method to separate the three components given noisy observations provably. Second, the bulk of the computation in TCMF can be distributed. On the technical side, we formulate the problem as a constrained nonconvex nonsmooth optimization problem. Despite the intricate nature of the problem, we provide a Taylor series characterization of its solution by solving the corresponding Karush-Kuhn-Tucker conditions. Using this characterization, we can show that the alternating minimization algorithm makes significant progress at each iteration and converges into the ground truth at a linear rate. Numerical experiments in video segmentation and anomaly detection highlight the superior feature extraction abilities of TCMF.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 25 likes about this paper.