Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Structured Low-Rank Matrix Factorization with Missing and Grossly Corrupted Observations (1409.1062v1)

Published 3 Sep 2014 in cs.LG, cs.CV, and stat.ML

Abstract: Recovering low-rank and sparse matrices from incomplete or corrupted observations is an important problem in machine learning, statistics, bioinformatics, computer vision, as well as signal and image processing. In theory, this problem can be solved by the natural convex joint/mixed relaxations (i.e., l_{1}-norm and trace norm) under certain conditions. However, all current provable algorithms suffer from superlinear per-iteration cost, which severely limits their applicability to large-scale problems. In this paper, we propose a scalable, provable structured low-rank matrix factorization method to recover low-rank and sparse matrices from missing and grossly corrupted data, i.e., robust matrix completion (RMC) problems, or incomplete and grossly corrupted measurements, i.e., compressive principal component pursuit (CPCP) problems. Specifically, we first present two small-scale matrix trace norm regularized bilinear structured factorization models for RMC and CPCP problems, in which repetitively calculating SVD of a large-scale matrix is replaced by updating two much smaller factor matrices. Then, we apply the alternating direction method of multipliers (ADMM) to efficiently solve the RMC problems. Finally, we provide the convergence analysis of our algorithm, and extend it to address general CPCP problems. Experimental results verified both the efficiency and effectiveness of our method compared with the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Fanhua Shang (47 papers)
  2. Yuanyuan Liu (75 papers)
  3. Hanghang Tong (137 papers)
  4. James Cheng (75 papers)
  5. Hong Cheng (74 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.