Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distorted static black holes with a bubble (2404.06450v1)

Published 9 Apr 2024 in gr-qc and hep-th

Abstract: We construct a family of local static, vacuum five-dimensional solutions with two commuting spatial isometries describing a black hole with a $S3$ horizon and a 2-cycle `bubble' in the domain of outer communications. The solutions are obtained by adding distortions to an asymptotically flat seed solution. We show that the conical singularities in the undistorted geometry can be removed by an appropriate choice of the distortion.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. A. Lichnerowicz, “Théories relativistes de la gravitation et de l’électromagnétisme: relativité générale et théories unitaires (J. Gabay, ed.), 1955.
  2. G. W. Gibbons, “Supergravity vacua and solitons,” [arXiv:1110.0918 [hep-th]].
  3. H. K. Kunduri and J. Lucietti, “No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory,” Class. Quant. Grav. 35, no.5, 054003 (2018) [arXiv:1712.02668 [gr-qc]].
  4. T. Shiromizu, S. Ohashi and R. Suzuki, “A no-go on strictly stationary spacetimes in four/higher dimensions,” Phys. Rev. D 86, 064041 (2012) [arXiv:1207.7250 [gr-qc]].
  5. I. Bena and N. P. Warner, “Black holes, black rings and their microstates,” Lect. Notes Phys. 755, 1-92 (2008) [arXiv:hep-th/0701216 [hep-th]].
  6. G. W. Gibbons and N. P. Warner, “Global structure of five-dimensional fuzzballs,” Class. Quant. Grav. 31, 025016 (2014) [arXiv:1305.0957 [hep-th]].
  7. H. K. Kunduri and J. Lucietti, “The first law of soliton and black hole mechanics in five dimensions,” Class. Quant. Grav. 31, no.3, 032001 (2014) [arXiv:1310.4810 [hep-th]].
  8. V. Breunholder and J. Lucietti, “Moduli space of supersymmetric solitons and black holes in five dimensions,” Commun. Math. Phys. 365, no.2, 471-513 (2019). [arXiv:1712.07092 [hep-th]].
  9. J. P. Gauntlett, J. B. Gutowski, C. M. Hull, S. Pakis and H. S. Reall, “All supersymmetric solutions of minimal supergravity in five dimensions,” Class. Quant. Grav. 20, 4587-4634 (2003). [arXiv:hep-th/0209114 [hep-th]].
  10. R. Suzuki and S. Tomizawa, “A Capped Black Hole in Five Dimensions,” [arXiv:2311.11653 [hep-th]].
  11. G. W. Gibbons, D. Ida and T. Shiromizu, “Uniqueness and nonuniqueness of static black holes in higher dimensions,” Phys. Rev. Lett. 89, 041101 (2002) [arXiv:hep-th/0206049 [hep-th]].
  12. R. Emparan and H. S. Reall, “Generalized Weyl Solutions,” Phys. Rev. D 65, 084025 (2002).
  13. F. Tomlinson, “Five-dimensional electrostatic black holes in a background field,” Class. Quant. Grav. 39, no.13, 135008 (2022) [arXiv:2111.14809 [gr-qc]].
  14. N. B. Agmon, A. Bedroya, M. J. Kang, C. Vafa, “Lectures on the string landscape and the Swampland”, [arXiv:2212.06187].
  15. S. Abdolrahimi, J. Kunz and P. Nedkova, “Myers-Perry Black Hole in an External Gravitational Field,” Phys. Rev. D 91, 064068 (2015).
  16. S. Abdolrahimi, J. Kunz, P. Nedkova and C. Tzounis, “Properties of the distorted Kerr black hole,” JCAP 1512, 009 (2015).
  17. M. Ansorg and J. Hennig, “The Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter”, Class. Quant. Grav. 25 (2008) 222001 [arXiv:0810.3998].
  18. M. Cvetic, G. W. Gibbons, C. N. Pope, “Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions”, Phys. Rev. Lett. 106 121301 (2011).
  19. D. N. Page and A. A. Shoom, “Universal area product for black holes: A heuristic argument”, Phys. Rev. D, 92 44039 (2015).
  20. G. T. Horowitz, M. Kolanowski, J. Santos, “A deformed IR: a new IR fixed point for four-dimensional holographic theories”, JHEP 02, 152 (2023).
  21. H. Weyl, “On the Theory of Gravitation,” Ann. Phys., 54, 117 (1917).
  22. R. Geroch and J. B. Hartle, “Distorted Black Holes,” J. Math. Phys. 23, 680 (1982).
  23. W. Israel and K. A. Khan, “Collinear Particles and Bondi Dipoles in General Relativity,” Nuovo Cimento 33, 331 (1964).
  24. L. A. Mysak and G. Szekeres, “Behavior of the Schwarzschild singularity in superimposed gravitational fields”, Can. J. Phys. 44 (1966) 617.
  25. W. Israel, “Event Horizons in Static Vacuum Space-Times,” Phys. Rev. 164, 1776 (1967).
  26. V. P. Frolov and A. A. Shoom, “Interior of Distorted Black Holes,” Phys. Rev. D 76, 064037 (2007).
  27. S. Fairhurst and B. Krishnan, “Distorted Black Holes with Charge,” Int. J. Mod. Phys. D 10, 691 (2001).
  28. W. Israel, “Event horizons in static vacuum space-times”, Phys. Rev. 164 (1967) 1776.
  29. A. Tomimatsu, “Distorted Rotating Black Holes,” Phys. Lett. A 103, 374 (1984).
  30. N. Bretón, T. Denisova, and V. Manko, “A Kerr Black Hole in the External Gravitational Field,” Phys. Lett. A 230, 7 (1997).
  31. N. Bretón, A. A. García, V. S. Manko, and T. E. Denisova, “Arbitrarily deformed Kerr Newman black hole in an external gravitational field”, Phys. Rev. D 57 (1998) 3382.
  32. S. Abdolrahimi, V. P. Frolov and A. A. Shoom, “Interior of a Charged Distorted Black Hole,” Phys. Rev. D, 80, 024011(2009).
  33. M. Ansorg and J. Hennig, “Inner Cauchy Horizon of Axisymmetric and Stationary Black Holes with Surrounding Matter in Einstein-Maxwell Theory”, Phys. Rev. Lett. 102 (2009) 221102 [arXiv:0903.5405].
  34. J. Hennig and M. Ansorg, “The inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: study in terms of soliton methods”, Annales Henri Poincare 10 (2009) 1075 [arXiv:0904.2071].
  35. S. Abdolrahimi and A. A. Shoom, “Distorted Five-dimensional Electrically Charged Black Holes,” Phys. Rev. D 89, no. 2, 024040 (2014).
  36. S. Abdolrahimi, R. Mann, and C. Tzounis, “Distorted Local Shadows”, Phys. Rev. D 91 084052 (2015).
  37. A. A. Shoom, C. Walsh, and I. Booth, “Geodesic motion around a distorted static black hole”, Phys. Rev. D 93 64019 (2016).
  38. M. Basovník and O. Semerák, “Geometry of deformed black holes. II. Schwarzschild hole surrounded by a Bach-Weyl ring”, Phys. Rev. D 94 044007 (2016).
  39. J. Grover, J. Kunz, P. Nedkova, A. Wittig, and S. Yazadjiev, “Multiple shadows from distorted static black holes”, Phys. Rev. D, 97 84024 (2018).
  40. S. Abdolrahimi, R. B. Mann, and C. Tzounis, “Distorted black ring”, Phys. Rev. D 101, 10, 104002 (2020).
  41. E. Deligianni, J. Kunz, P. Nedkova, “Quasiperiodic oscillations from the accretion disk around distorted black holes”, Phys. Rev. D 102 64023 (2020).
  42. M. Astorino, A. Vigano, “Many accelerating distorted black holes”, Eur. Phys. J. C, 81, 891 (2021).
  43. S. Abdolrahimi, R. B. Mann, C. Tzounis, “Double Images from a Single Black Hole”, Phys. Rev. D 92, 124011 (2015).
  44. A. Rose “Constructing static black hole-soliton spacetimes” MSc. thesis, Memorial University of Newfoundland (2019).
  45. H. Iguchi, K. Izumi and T. Mishima, “Systematic solution-generation of five-dimensional black holes,” Prog. Theor. Phys. Suppl. 189, 93-125 (2011) [arXiv:1106.0387 [gr-qc]].
  46. T. Harmark, “Stationary and axisymmetric solutions of higher-dimensional general relativity,” Phys. Rev. D 70, 124002 (2004) [arXiv:hep-th/0408141 [hep-th]].
  47. J. D. Jackson, “Classical Electrodynamics,” Wiley, 1998, ISBN 978-0-471-30932-1
  48. J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333-2346 (1973).
  49. J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161-170 (1973)
  50. H. K. Kunduri and J. Lucietti, “New thermodynamic identities for five-dimensional black holes,” Class. Quant. Grav. 36, no.7, 07LT02 (2019) [arXiv:1810.13210 [hep-th]].
  51. S. Hollands and S. Yazadjiev, “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields,” Commun. Math. Phys. 283, 749-768 (2008) [arXiv:0707.2775 [gr-qc]].
  52. R. Suzuki and S. Tomizawa, “Solution Generation of a Capped Black Hole,” [arXiv:2403.17796 [hep-th]].
  53. J. Lucietti and F. Tomlinson, “Moduli space of stationary vacuum black holes from integrability,” Adv. Theor. Math. Phys. 26, no.2, 371 (2022) [arXiv:2008.12761 [gr-qc]].
  54. J. Lucietti and F. Tomlinson, “On the nonexistence of a vacuum black lens,” JHEP 21, 005 (2020) [arXiv:2012.00381 [gr-qc]].
  55. T. Pilkington, A. Melanson, J. Fitzgerald and I. Booth, “Trapped and marginally trapped surfaces in Weyl-distorted Schwarzschild solutions”, Class. Quant. Grav. 28, 125018 (2011).
  56. M. Basovník, O. Semerák, “On geometry of deformed black holes: II. Schwarzschild hole surrounded by a Bach–Weyl ring”, Phys Rev. D 94 044007 (2016).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 3 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube