Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Capped Black Hole in Five Dimensions (2311.11653v2)

Published 20 Nov 2023 in hep-th and gr-qc

Abstract: We present the first non-BPS exact solution of an asymptotically flat, stationary spherical black hole having domain of outer communication with nontrivial topology in five-dimensional minimal supergravity. It describes a charged rotating black hole capped by a disc-shaped bubble. The existence of the ``capped black hole'' shows the non-uniqueness of spherical black holes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (12)
  1. S. Tomizawa, Y. Yasui and A. Ishibashi, “Uniqueness theorem for charged rotating black holes in five-dimensional minimal supergravity,” Phys. Rev. D 79, 124023 (2009) [arXiv:0901.4724 [hep-th]].
  2. M. Cvetic and D. Youm, “General rotating five-dimensional black holes of toroidally compactified heterotic string,” Nucl. Phys. B 476, 118-132 (1996) [arXiv:hep-th/9603100 [hep-th]].
  3. J. L. Friedman, K. Schleich and D. M. Witt, “Topological censorship,” Phys. Rev. Lett. 71, 1486-1489 (1993) [erratum: Phys. Rev. Lett. 75, 1872 (1995)] [arXiv:gr-qc/9305017 [gr-qc]].
  4. G. W. Gibbons, D. Ida and T. Shiromizu, “Uniqueness and nonuniqueness of static vacuum black holes in higher dimensions,” Prog. Theor. Phys. Suppl. 148, 284-290 (2003) [arXiv:gr-qc/0203004 [gr-qc]].
  5. G. W. Gibbons, D. Ida and T. Shiromizu, “Uniqueness and nonuniqueness of static black holes in higher dimensions,” Phys. Rev. Lett. 89, 041101 (2002) [arXiv:hep-th/0206049 [hep-th]].
  6. F. R. Tangherlini, “Schwarzschild field in n dimensions and the dimensionality of space problem,” Nuovo Cim.  27, 636 (1963).
  7. H. K. Kunduri and J. Lucietti, “Black hole non-uniqueness via spacetime topology in five dimensions,” JHEP 10, 082 (2014) [arXiv:1407.8002 [hep-th]].
  8. A. Bouchareb, G. Clement, C. M. Chen, D. V. Gal’tsov, N. G. Scherbluk and T. Wolf, “G(2) generating technique for minimal D=5 supergravity and black rings,” Phys. Rev. D 76, 104032 (2007) [erratum: Phys. Rev. D 78, 029901 (2008)] [arXiv:0708.2361 [hep-th]].
  9. Y. Chen and E. Teo, “A Rotating black lens solution in five dimensions,” Phys. Rev. D 78, 064062 (2008) [arXiv:0808.0587 [gr-qc]].
  10. S. Hollands and S. Yazadjiev, “Uniqueness theorem for 5-dimensional black holes with two axial Killing fields,” Commun. Math. Phys. 283, 749-768 (2008) [arXiv:0707.2775 [gr-qc]].
  11. M. Cvetič and D. Youm, “Entropy of nonextreme charged rotating black holes in string theory,” Phys. Rev. D 54, 2612-2620 (1996) [arXiv:hep-th/9603147 [hep-th]].
  12. H. K. Kunduri and J. Lucietti, “The first law of soliton and black hole mechanics in five dimensions,” Class. Quant. Grav. 31, no.3, 032001 (2014) [arXiv:1310.4810 [hep-th]].
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.