Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Graph Neural Network Meets Multi-Agent Reinforcement Learning: Fundamentals, Applications, and Future Directions (2404.04898v1)

Published 7 Apr 2024 in cs.IT and math.IT

Abstract: Multi-agent reinforcement learning (MARL) has become a fundamental component of next-generation wireless communication systems. Theoretically, although MARL has the advantages of low computational complexity and fast convergence rate, there exist several challenges including partial observability, non-stationary, and scalability. In this article, we investigate a novel MARL with graph neural network-aided communication (GNNComm-MARL) to address the aforementioned challenges by making use of graph attention networks to effectively sample neighborhoods and selectively aggregate messages. Furthermore, we thoroughly study the architecture of GNNComm-MARL and present a systematic design solution. We then present the typical applications of GNNComm-MARL from two aspects: resource allocation and mobility management. The results obtained unveil that GNNComm-MARL can achieve better performance with lower communication overhead compared to conventional communication schemes. Finally, several important research directions regarding GNNComm-MARL are presented to facilitate further investigation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. Zhang, E. Björnson, M. Matthaiou, D. W. K. Ng, H. Yang, and D. J. Love, “Prospective multiple antenna technologies for beyond 5G,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1637–1660, Aug. 2020.
  2. M. Chafii, S. Naoumi, R. Alami, E. Almazrouei, M. Bennis, and M. Debbah, “Emergent communication in multi-agent reinforcement learning for future wireless networks,” arXiv:2309.06021, 2023.
  3. Y. Shi, L. Lian, Y. Shi, Z. Wang, Y. Zhou, L. Fu, L. Bai, J. Zhang, and W. Zhang, “Machine learning for large-scale optimization in 6G wireless networks,” IEEE Commun. Surveys Tuts., Early Access, 2024.
  4. J. Zheng, J. Zhang, H. Du, D. Niyato, B. Ai, M. Debbah, and K. B. Letaief, “Mobile cell-free massive MIMO: Challenges, solutions, and future directions,” IEEE Wireless Commun., Early Access, 2024.
  5. Z. Lin, M. Lin, B. Champagne, W.-P. Zhu, and N. Al-Dhahir, “Secrecy-energy efficient hybrid beamforming for satellite-terrestrial integrated networks,” IEEE Trans. Commun., vol. 69, no. 9, pp. 6345–6360, Sep. 2021.
  6. Z. Liu, J. Zhang, Z. Liu, H. Du, Z. Wang, D. Niyato, M. Guizani, and B. Ai, “Cell-free XL-MIMO meets multi-agent reinforcement learning: Architectures, challenges, and future directions,” IEEE Wireless Commun., to appear, 2024.
  7. S. Munikoti, D. Agarwal, L. Das, M. Halappanavar, and B. Natarajan, “Challenges and opportunities in deep reinforcement learning with graph neural networks: A comprehensive review of algorithms and applications,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–21, 2023.
  8. Y. Shen, J. Zhang, S. H. Song, and K. B. Letaief, “Graph neural networks for wireless communications: From theory to practice,” IEEE Trans. Wireless Commun., vol. 22, no. 5, pp. 3554–3569, May. 2023.
  9. M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with random edge graph neural networks,” IEEE Trans. Signal Process., vol. 68, pp. 2977–2991, Apr. 2020.
  10. Z. Wang, M. Eisen, and A. Ribeiro, “Learning decentralized wireless resource allocations with graph neural networks,” IEEE Trans. Signal Process., vol. 70, pp. 1850–1863, Mar. 2022.
  11. J. Jiang, C. Dun, T. Huang, and Z. Lu, “Graph convolutional reinforcement learning,” in ICLR, 2019.
  12. Y. Niu, R. R. Paleja, and M. C. Gombolay, “Multi-agent graph-attention communication and teaming.” in AAMAS, 2021.
  13. J. Kim, H. Lee, S.-E. Hong, and S.-H. Park, “A bipartite graph neural network approach for scalable beamforming optimization,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 333–347, Jan. 2023.
  14. B. Li, L.-L. Yang, R. G. Maunder, S. Sun, and P. Xiao, “Heterogeneous graph neural network for power allocation in multicarrier-division duplex cell-free massive MIMO systems,” IEEE Trans. Wireless Commun., vol. 23, no. 2, pp. 962–977, Feb. 2024.
  15. H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with hierarchical graph attention network,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020, pp. 7236–7243.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.