Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 388 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Projective Geometries and Simple Pointed Matroids as $\mathbb{F}_1$-modules (2404.04730v1)

Published 6 Apr 2024 in math.CT and math.CO

Abstract: We describe a fully faithful embedding of projective geometries, given in terms of closure operators, into $\mathbb{F}_1$-modules, in the sense of Connes and Consani. This factors through a faithful functor out of simple pointed matroids. This follows from our construction of a fully faithful embedding of weakly unital, commutative hypermagmas into $\fun$-modules. This embedding is of independent interest as it generalizes the classical Eilenberg-MacLane embedding for commutative monoids and recovers Segal's nerve construction for commutative partial monoids. For this reason, we spend some time elaborating its structure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Foundations of matroids I: Matroids without large uniform minors, 2020. arXiv:2008.00014.
  2. 2-Segal objects and the Waldhausen construction. Algebr. Geom. Topol., 21(3):1267–1326, 2021.
  3. James Borger. Lambda-rings and the field with one element, 2009. arXiv:0906.3146.
  4. On the homology of non-connected monoids and their associated groups. Comment. Math. Helv., 47:1–14, 1972.
  5. From monoids to hyperstructures: in search of an absolute arithmetic. In Casimir force, Casimir operators and the Riemann hypothesis, pages 147–198. Walter de Gruyter, Berlin, 2010.
  6. The hyperring of adèle classes. J. Number Theory, 131(2):159–194, 2011.
  7. The arithmetic site. C. R. Math. Acad. Sci. Paris, 352(12):971–975, 2014.
  8. Absolute algebra and Segal’s ΓΓ\Gammaroman_Γ-rings: au dessous de Spec⁢(ℤ)¯¯Specℤ\overline{{\rm Spec}(\mathbb{Z})}over¯ start_ARG roman_Spec ( blackboard_Z ) end_ARG. J. Number Theory, 162:518–551, 2016.
  9. S⁢p⁢e⁢c⁢(ℤ)¯¯𝑆𝑝𝑒𝑐ℤ\overline{Spec(\mathbb{Z})}over¯ start_ARG italic_S italic_p italic_e italic_c ( blackboard_Z ) end_ARG and the Gromov norm. Theory and Applications of Categories, 35(6):155–178, 2020.
  10. Segal’s gamma rings and universal arithmetic. Q. J. Math., 72(1-2):1–29, 2021.
  11. On the metaphysics of 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, 2023. arXiv:2307.06748.
  12. Frobenius and commutative pseudomonoids in the bicategory of spans, 2023. arXiv:2311.15342.
  13. On the foundations of combinatorial theory: Combinatorial geometries. The M.I.T. Press, Cambridge, Mass.-London, preliminary edition, 1970.
  14. Anton Deitmar. Schemes over 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. In Number fields and function fields—two parallel worlds, volume 239 of Progr. Math., pages 87–100. Birkhäuser Boston, Boston, MA, 2005.
  15. Local Structure of Algebraic K-theory, volume 18 of Algebra and Applications. Springer-Verlag London, 2012. DOI.
  16. Higher Segal spaces, volume 2244 of Lecture Notes in Mathematics. Springer, Cham, 2019.
  17. Nikolai Durov. New approach to Arakelov geometry. arXiv:0704.2030, 2007.
  18. Modern projective geometry, volume 521 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2000.
  19. Daniel M. Kan. Functors involving c.s.s. complexes. Trans. Amer. Math. Soc., 87:330–346, 1958.
  20. Oliver Lorscheid. Blueprints—towards absolute arithmetic? J. Number Theory, 144:408–421, 2014.
  21. Oliver Lorscheid. 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for everyone. Jahresber. Dtsch. Math.-Ver., 120(2):83–116, 2018.
  22. Yuri Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). Number 228, pages 4, 121–163. 1995. Columbia University Number Theory Seminar (New York, 1992).
  23. Hirokazu Nishimura and Susumu Kuroda, editors. A lost mathematician, Takeo Nakasawa. The forgotten father of matroid theory. Basel: Birkhäuser, 2009.
  24. nLab authors. nerve and realization. https://ncatlab.org/nlab/show/nerve+and+realization, March 2024. Revision 30.
  25. So Nakamura and Manuel L. Reyes. Categories of hypermagmas, hypergroups, and related hyperstructures, 2023. arXiv:2304.09273.
  26. Walter Prenowitz. Projective geometries as multigroups. Amer. J. Math., 65:235–256, 1943.
  27. Daniel Quillen. Cohomology of groups. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pages 47–51. Gauthier-Villars Éditeur, Paris, 1971.
  28. Graeme Segal. Configuration-spaces and iterated loop-spaces. Invent. Math., 21:213–221, 1973.
  29. Graeme Segal. Categories and cohomology theories. Topology, 13:293–312, 1974.
  30. A. L. Smirnov. Hurwitz inequalities for number fields. Algebra i Analiz, 4(2):186–209, 1992.
  31. Christophe Soulé. Les variétés sur le corps à un élément. Mosc. Math. J., 4(1):217–244, 312, 2004.
  32. J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick, Louvain, 1957.
  33. Au-dessous de Spec⁢ℤSpecℤ{\rm Spec}\,\mathbb{Z}roman_Spec blackboard_Z. J. K-Theory, 3(3):437–500, 2009.
  34. Hassler Whitney. On the Abstract Properties of Linear Dependence. Amer. J. Math., 57(3):509–533, 1935.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube