Projective Geometries and Simple Pointed Matroids as $\mathbb{F}_1$-modules (2404.04730v1)
Abstract: We describe a fully faithful embedding of projective geometries, given in terms of closure operators, into $\mathbb{F}_1$-modules, in the sense of Connes and Consani. This factors through a faithful functor out of simple pointed matroids. This follows from our construction of a fully faithful embedding of weakly unital, commutative hypermagmas into $\fun$-modules. This embedding is of independent interest as it generalizes the classical Eilenberg-MacLane embedding for commutative monoids and recovers Segal's nerve construction for commutative partial monoids. For this reason, we spend some time elaborating its structure.
- Foundations of matroids I: Matroids without large uniform minors, 2020. arXiv:2008.00014.
- 2-Segal objects and the Waldhausen construction. Algebr. Geom. Topol., 21(3):1267–1326, 2021.
- James Borger. Lambda-rings and the field with one element, 2009. arXiv:0906.3146.
- On the homology of non-connected monoids and their associated groups. Comment. Math. Helv., 47:1–14, 1972.
- From monoids to hyperstructures: in search of an absolute arithmetic. In Casimir force, Casimir operators and the Riemann hypothesis, pages 147–198. Walter de Gruyter, Berlin, 2010.
- The hyperring of adèle classes. J. Number Theory, 131(2):159–194, 2011.
- The arithmetic site. C. R. Math. Acad. Sci. Paris, 352(12):971–975, 2014.
- Absolute algebra and Segal’s ΓΓ\Gammaroman_Γ-rings: au dessous de Spec(ℤ)¯¯Specℤ\overline{{\rm Spec}(\mathbb{Z})}over¯ start_ARG roman_Spec ( blackboard_Z ) end_ARG. J. Number Theory, 162:518–551, 2016.
- Spec(ℤ)¯¯𝑆𝑝𝑒𝑐ℤ\overline{Spec(\mathbb{Z})}over¯ start_ARG italic_S italic_p italic_e italic_c ( blackboard_Z ) end_ARG and the Gromov norm. Theory and Applications of Categories, 35(6):155–178, 2020.
- Segal’s gamma rings and universal arithmetic. Q. J. Math., 72(1-2):1–29, 2021.
- On the metaphysics of 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, 2023. arXiv:2307.06748.
- Frobenius and commutative pseudomonoids in the bicategory of spans, 2023. arXiv:2311.15342.
- On the foundations of combinatorial theory: Combinatorial geometries. The M.I.T. Press, Cambridge, Mass.-London, preliminary edition, 1970.
- Anton Deitmar. Schemes over 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT. In Number fields and function fields—two parallel worlds, volume 239 of Progr. Math., pages 87–100. Birkhäuser Boston, Boston, MA, 2005.
- Local Structure of Algebraic K-theory, volume 18 of Algebra and Applications. Springer-Verlag London, 2012. DOI.
- Higher Segal spaces, volume 2244 of Lecture Notes in Mathematics. Springer, Cham, 2019.
- Nikolai Durov. New approach to Arakelov geometry. arXiv:0704.2030, 2007.
- Modern projective geometry, volume 521 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2000.
- Daniel M. Kan. Functors involving c.s.s. complexes. Trans. Amer. Math. Soc., 87:330–346, 1958.
- Oliver Lorscheid. Blueprints—towards absolute arithmetic? J. Number Theory, 144:408–421, 2014.
- Oliver Lorscheid. 𝔽1subscript𝔽1\mathbb{F}_{1}blackboard_F start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT for everyone. Jahresber. Dtsch. Math.-Ver., 120(2):83–116, 2018.
- Yuri Manin. Lectures on zeta functions and motives (according to Deninger and Kurokawa). Number 228, pages 4, 121–163. 1995. Columbia University Number Theory Seminar (New York, 1992).
- Hirokazu Nishimura and Susumu Kuroda, editors. A lost mathematician, Takeo Nakasawa. The forgotten father of matroid theory. Basel: Birkhäuser, 2009.
- nLab authors. nerve and realization. https://ncatlab.org/nlab/show/nerve+and+realization, March 2024. Revision 30.
- So Nakamura and Manuel L. Reyes. Categories of hypermagmas, hypergroups, and related hyperstructures, 2023. arXiv:2304.09273.
- Walter Prenowitz. Projective geometries as multigroups. Amer. J. Math., 65:235–256, 1943.
- Daniel Quillen. Cohomology of groups. In Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, pages 47–51. Gauthier-Villars Éditeur, Paris, 1971.
- Graeme Segal. Configuration-spaces and iterated loop-spaces. Invent. Math., 21:213–221, 1973.
- Graeme Segal. Categories and cohomology theories. Topology, 13:293–312, 1974.
- A. L. Smirnov. Hurwitz inequalities for number fields. Algebra i Analiz, 4(2):186–209, 1992.
- Christophe Soulé. Les variétés sur le corps à un élément. Mosc. Math. J., 4(1):217–244, 312, 2004.
- J. Tits. Sur les analogues algébriques des groupes semi-simples complexes. In Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques, pages 261–289. Établissements Ceuterick, Louvain, 1957.
- Au-dessous de SpecℤSpecℤ{\rm Spec}\,\mathbb{Z}roman_Spec blackboard_Z. J. K-Theory, 3(3):437–500, 2009.
- Hassler Whitney. On the Abstract Properties of Linear Dependence. Amer. J. Math., 57(3):509–533, 1935.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.