Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Realistic Few-Shot Relation Extraction: A New Meta Dataset and Evaluation (2404.04445v1)

Published 5 Apr 2024 in cs.CL and cs.IR

Abstract: We introduce a meta dataset for few-shot relation extraction, which includes two datasets derived from existing supervised relation extraction datasets NYT29 (Takanobu et al., 2019; Nayak and Ng, 2020) and WIKIDATA (Sorokin and Gurevych, 2017) as well as a few-shot form of the TACRED dataset (Sabo et al., 2021). Importantly, all these few-shot datasets were generated under realistic assumptions such as: the test relations are different from any relations a model might have seen before, limited training data, and a preponderance of candidate relation mentions that do not correspond to any of the relations of interest. Using this large resource, we conduct a comprehensive evaluation of six recent few-shot relation extraction methods, and observe that no method comes out as a clear winner. Further, the overall performance on this task is low, indicating substantial need for future research. We release all versions of the data, i.e., both supervised and few-shot, for future research.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fahmida Alam (2 papers)
  2. Md Asiful Islam (2 papers)
  3. Robert Vacareanu (12 papers)
  4. Mihai Surdeanu (53 papers)
Citations (1)