Mapping Excited Gauged Q-balls (2404.03053v2)
Abstract: Properties such as the radius, charge and energy of ${U}(1)$ gauged Q-balls are analytically complicated to characterize. A mapping relation is known between the ground state of gauged Q-balls and global Q-balls that reduces the complexity of the analysis of the ground state of gauged Q-balls. Extending the map to excited states is a powerful tool to determine the properties of the rest of gauged Q-ball solution space. In this article we explore the mapping relation extension to characterize numerically and analytically excited gauged Q-balls solutions and their properties. A feature of excited gauged Q-balls is acquiring a maximum number excited states and having a maximal size, which we analytically predict via the mapping relation. We show that analytical approximations of the charge and energy, in the thin-wall limit, can be extended to excited gauged Q-balls and discuss the types of instabilities of these states.
- S. R. Coleman, “Q Balls,” Nucl. Phys. B262 (1985) 263. [Erratum: Nucl. Phys. B269, 744 (1986)].
- T. D. Lee and Y. Pang, “Nontopological solitons,” Phys. Rept. 221 (1992) 251–350.
- A. Kusenko, “Solitons in the supersymmetric extensions of the standard model,” Phys. Lett. B 405 (1997) 108, [hep-ph/9704273].
- K. Enqvist and J. McDonald, “Q balls and baryogenesis in the MSSM,” Phys. Lett. B 425 (1998) 309–321, [hep-ph/9711514].
- D. A. Demir, “Stable Q balls from extra dimensions,” Phys. Lett. B 495 (2000) 357–362, [hep-ph/0006344].
- S. Abel and A. Kehagias, “Q-branes,” JHEP 11 (2015) 096, [1507.04557].
- F. Bishara, G. Johnson, O. Lennon, and J. March-Russell, “Higgs Assisted Q-balls from Pseudo-Nambu-Goldstone Bosons,” JHEP 11 (2017) 179, [1708.04620].
- F. Bishara and O. Lennon, “Thin-Walled Higgs Assisted Q-balls from Pseudo-Nambu-Goldstone Bosons,” [2110.02236].
- R. Battye and P. Sutcliffe, “Q-ball dynamics,” Nucl. Phys. B 590 (2000) 329–363, [hep-th/0003252].
- T. Multamaki and I. Vilja, “Simulations of Q ball formation,” Phys. Lett. B 535 (2002) 170–176, [hep-ph/0203195].
- A. Kusenko and A. Mazumdar, “Gravitational waves from fragmentation of a primordial scalar condensate into Q-balls,” Phys. Rev. Lett. 101 (2008) 211301, [0807.4554].
- M. I. Tsumagari, “Affleck-Dine dynamics, Q-ball formation and thermalisation,” Phys. Rev. D 80 (2009) 085010, [0907.4197].
- T. Hiramatsu, M. Kawasaki, and F. Takahashi, “Numerical study of Q-ball formation in gravity mediation,” JCAP 06 (2010) 008, [1003.1779].
- A. Kusenko and M. E. Shaposhnikov, “Supersymmetric Q balls as dark matter,” Phys. Lett. B418 (1998) 46–54, [hep-ph/9709492].
- A. Kusenko, V. Kuzmin, M. E. Shaposhnikov, and P. Tinyakov, “Experimental signatures of supersymmetric dark matter Q balls,” Phys. Rev. Lett. 80 (1998) 3185–3188, [hep-ph/9712212].
- A. Kusenko and P. J. Steinhardt, “Q ball candidates for selfinteracting dark matter,” Phys. Rev. Lett. 87 (2001) 141301, [astro-ph/0106008].
- E. Pontón, Y. Bai, and B. Jain, “Electroweak Symmetric Dark Matter Balls,” JHEP 09 (2019) 011, [1906.10739].
- Y. Bai and J. Berger, “Nucleus Capture by Macroscopic Dark Matter,” JHEP 05 (2020) 160, [1912.02813].
- Y. Bai, S. Lu, and N. Orlofsky, “Q-monopole-ball: a topological and nontopological soliton,” JHEP 01 (2022) 109, [2111.10360].
- E. Krylov, A. Levin, and V. Rubakov, “Cosmological phase transition, baryon asymmetry and dark matter Q-balls,” Phys. Rev. D87 (2013) 083528, [1301.0354].
- D. Croon, A. Kusenko, A. Mazumdar, and G. White, “Solitosynthesis and Gravitational Waves,” Phys. Rev. D101 (2020) 085010, [1910.09562].
- M. S. Volkov and E. Wohnert, “Spinning Q balls,” Phys. Rev. D 66 (2002) 085003, [hep-th/0205157].
- M. Mai and P. Schweitzer, “Radial excitations of Q-balls, and their D-term,” Phys. Rev. D 86 (2012) 096002, [1206.2930].
- T. Multamaki, “Excited Q balls in the MSSM with gravity mediated supersymmetry breaking,” Phys. Lett. B 511 (2001) 92–100, [hep-ph/0102339].
- Y. Almumin, J. Heeck, A. Rajaraman, and C. B. Verhaaren, “Excited Q-balls,” Eur. Phys. J. C 82 no. 9, (2022) 801, [2112.00657].
- A. Masoumi, K. D. Olum, and B. Shlaer, “Efficient numerical solution to vacuum decay with many fields,” JCAP 1701 (2017) 051, [1610.06594].
- G. Rosen, “Dilatation covariance and exact solutions in local relativistic field theories,” Phys. Rev. 183 (1969) 1186–1188.
- S. Theodorakis, “Analytic Q ball solutions in a parabolic-type potential,” Phys. Rev. D61 (2000) 047701.
- R. MacKenzie and M. B. Paranjape, “From Q-walls to Q-balls,” JHEP 08 (2001) 003, [hep-th/0104084].
- I. E. Gulamov, E. Ya. Nugaev, and M. N. Smolyakov, “Analytic Q𝑄Qitalic_Q-ball solutions and their stability in a piecewise parabolic potential,” Phys. Rev. D87 (2013) 085043, [1303.1173].
- J. Heeck, A. Rajaraman, R. Riley, and C. B. Verhaaren, “Understanding Q-Balls Beyond the Thin-Wall Limit,” Phys. Rev. D103 (2021) 045008, [2009.08462].
- K.-M. Lee, J. A. Stein-Schabes, R. Watkins, and L. M. Widrow, “Gauged Q Balls,” Phys. Rev. D39 (1989) 1665.
- I. E. Gulamov, E. Ya. Nugaev, A. G. Panin, and M. N. Smolyakov, “Some properties of U(1)𝑈1U(1)italic_U ( 1 ) gauged Q-balls,” Phys. Rev. D92 (2015) 045011, [1506.05786].
- Y. Brihaye, A. Cisterna, B. Hartmann, and G. Luchini, “From topological to nontopological solitons: Kinks, domain walls, and Q𝑄Qitalic_Q-balls in a scalar field model with a nontrivial vacuum manifold,” Phys. Rev. D 92 no. 12, (2015) 124061, [1511.02757].
- J. Heeck, A. Rajaraman, R. Riley, and C. B. Verhaaren, “Mapping Gauged Q-Balls,” Phys. Rev. D 103 no. 11, (2021) 116004, [2103.06905].
- A. Y. Loginov and V. V. Gauzshtein, “Radially excited U(1)𝑈1U\left(1\right)italic_U ( 1 ) gauged Q𝑄Qitalic_Q-balls,” Phys. Rev. D 102 no. 2, (2020) 025010, [2004.03446].
- R. Friedberg, T. D. Lee, and A. Sirlin, “A Class of Scalar-Field Soliton Solutions in Three Space Dimensions,” Phys. Rev. D13 (1976) 2739–2761.
- I. Gulamov, E. Nugaev, and M. Smolyakov, “Theory of U(1)𝑈1U(1)italic_U ( 1 ) gauged Q-balls revisited,” Phys. Rev. D 89 (2014) 085006, [1311.0325].
- A. G. Panin and M. N. Smolyakov, “Problem with classical stability of U(1) gauged Q-balls,” Phys. Rev. D 95 (2017) 065006, [1612.00737].
- Wolfram Research, Inc., “Mathematica, Version 12.2.” https://www.wolfram.com/mathematica. Champaign, IL, 2020.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.