Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

A Coupled Neural Field Model for the Standard Consolidation Theory (2404.02938v1)

Published 3 Apr 2024 in q-bio.NC

Abstract: The standard consolidation theory states that short-term memories located in the hippocampus enable the consolidation of long-term memories in the neocortex. In other words, the neocortex slowly learns long-term memories with a transient support of the hippocampus that quickly learns unstable memories. However, it is not clear yet what could be the neurobiological mechanisms underlying these differences in learning rates and memory time-scales. Here, we propose a novel modelling approach of the standard consolidation theory, that focuses on its potential neurobiological mechanisms. In addition to synaptic plasticity and spike frequency adaptation, our model incorporates adult neurogenesis in the dentate gyrus as well as the difference in size between the neocortex and the hippocampus, that we associate with distance-dependent synaptic plasticity. We also take into account the interconnected spatial structure of the involved brain areas, by incorporating the above neurobiological mechanisms in a coupled neural field framework, where each area is represented by a separate neural field with intra- and inter-area connections. To our knowledge, this is the first attempt to apply neural fields to this process. Using numerical simulations and mathematical analysis, we explore the short-term and long-term dynamics of the model upon alternance of phases of hippocampal replay and retrieval cue of an external input. This external input is encodable as a memory pattern in the form of a multiple bump attractor pattern in the individual neural fields. In the model, hippocampal memory patterns become encoded first, before neocortical ones, because of the smaller distances between the bumps of the hippocampal memory patterns. As a result, retrieval of the input pattern in the neocortex at short time-scales necessitates the additional input delivered by the memory pattern of the hippocampus. Neocortical memory patterns progressively consolidate at longer times, up to a point where their retrieval does not need the support of the hippocampus anymore. At longer times, perturbation of the hippocampal neural fields by neurogenesis erases the hippocampus pattern, leading to a final state where the memory pattern is exclusively evoked in the neocortex. Therefore, the dynamics of our model successfully reproduces the main features of the standard consolidation theory. This suggests that neurogenesis in the hippocampus and distance-dependent synaptic plasticity coupled to synaptic depression and spike frequency adaptation, are indeed critical neurobiological processes in memory consolidation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Neural Fields with Fast Learning Dynamic Kernel. Biological Cybernetics 106, 15–26. doi:10.1007/s00422-012-0475-9.
  2. Synaptic Depression and Cortical Gain Control. Science 275, 221–224. doi:10.1126/science.275.5297.221.
  3. A Synaptic Reinforcement-Based Model for Transient Amnesia Following Disruptions of Memory Consolidation and Reconsolidation. Hippocampus 18, 584–601. doi:10.1002/hipo.20420.
  4. Dynamics of Pattern Formation in Lateral-Inhibition Type Neural Fields. Biological Cybernetics 27, 77–87. doi:10.1007/BF00337259.
  5. The Corticohippocampal Circuit, Synaptic Plasticity, and Memory. Cold Spring Harbor Perspectives in Biology 7, a021733. doi:10.1101/cshperspect.a021733.
  6. A Computational Principle for Hippocampal Learning and Neurogenesis. Hippocampus 15, 722–738. doi:10.1002/hipo.20095.
  7. Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences 92, 3844–3848. doi:10.1073/pnas.92.9.3844.
  8. A Universal Model for Spike-Frequency Adaptation. Neural Computation 15, 2523–2564. doi:10.1162/089976603322385063.
  9. Spatiotemporal Dynamics of Continuum Neural Fields. Journal of Physics A: Mathematical and Theoretical 45, 033001. doi:10.1088/1751-8113/45/3/033001.
  10. Cortical Rewiring and Information Storage. Nature 431, 782–788. doi:10.1038/nature03012.
  11. Waves, Bumps, and Patterns in Neural Field Theories. Biological Cybernetics 93, 91–108. doi:10.1007/s00422-005-0574-y.
  12. Tutorial on Neural Field Theory, in: Coombes, S., beim Graben, P., Potthast, R., Wright, J. (Eds.), Neural Fields: Theory and Applications. Springer, Berlin, Heidelberg, pp. 1–43. doi:10.1007/978-3-642-54593-1_1.
  13. Bumps, Breathers, and Waves in a Neural Network with Spike Frequency Adaptation. Physical Review Letters 94, 148102. doi:10.1103/PhysRevLett.94.148102.
  14. The Biology of Forgetting—A Perspective. Neuron 95, 490–503. doi:10.1016/j.neuron.2017.05.039.
  15. Excitation-Neurogenesis Coupling in Adult Neural Stem/Progenitor Cells. Neuron 42, 535–552. doi:10.1016/S0896-6273(04)00266-1.
  16. A Neural Field Model of the Somatosensory Cortex: Formation, Maintenance and Reorganization of Ordered Topographic Maps. PLoS ONE 7, e40257. doi:10.1371/journal.pone.0040257.
  17. Multi-Bump Solutions in a Neural Field Model with External Inputs. Physica D: Nonlinear Phenomena 326, 32–51. doi:10.1016/j.physd.2016.01.009.
  18. Memory Consolidation from Seconds to Weeks: A Three-Stage Neural Network Model with Autonomous Reinstatement Dynamics. Frontiers in Computational Neuroscience 8. doi:10.3389/fncom.2014.00064.
  19. Continuous Neural Network with Windowed Hebbian Learning. Biological Cybernetics 109, 321–332. doi:10.1007/s00422-015-0645-7.
  20. The Organization of Recent and Remote Memories. Nature Reviews Neuroscience 6, 119–130.
  21. Hippocampal Neurogenesis and Forgetting. Trends in Neurosciences 36, 497–503. doi:10.1016/j.tins.2013.05.002.
  22. α𝛼\alphaitalic_α-CaMKII-dependent Plasticity in the Cortex Is Required for Permanent Memory. Nature 411, 309–313. doi:10.1038/35077089.
  23. Analysis of Activity Dependent Development of Topographic Maps in Neural Field Theory with Short Time Scale Dependent Plasticity. Mathematical Neuroscience and Applications Volume 2, 8390. doi:10.46298/mna.8390.
  24. A Critical Period for Enhanced Synaptic Plasticity in Newly Generated Neurons of the Adult Brain. Neuron 54, 559–566. doi:10.1016/j.neuron.2007.05.002.
  25. Mathematical Formulations of Hebbian Learning. Biological Cybernetics 87, 404–415. doi:10.1007/s00422-002-0353-y.
  26. Cellular Basis of Working Memory. Neuron 14, 477–485. doi:10.1016/0896-6273(95)90304-6.
  27. A Computational Model of Systems Memory Consolidation and Reconsolidation. Hippocampus 30, 659–677. doi:10.1002/hipo.23187.
  28. A Model of Bi-Directional Interactions between Complementary Learning Systems for Memory Consolidation of Sequential Experiences. Frontiers in Systems Neuroscience 16, 972235. doi:10.3389/fnsys.2022.972235.
  29. A Neural Model of Schemas and Memory Encoding. Biological Cybernetics 114, 169–186. doi:10.1007/s00422-019-00808-7.
  30. Dynamical Systems in Neuroscience. The Geometry of Excitability and Bursting. doi:10.7551/mitpress/2526.001.0001.
  31. Cognitive Functions of the Prefrontal Cortex. Frontiers in Human Neuroscience 4. doi:10.3389/conf.fnins.2010.14.00001.
  32. Finding the Engram. Nature Reviews Neuroscience 16, 521–534. doi:10.1038/nrn4000.
  33. Memory Engrams: Recalling the Past and Imagining the Future. Science 367, eaaw4325. doi:10.1126/science.aaw4325.
  34. Off-Line Replay Maintains Declarative Memories in a Model of Hippocampal-Neocortical Interactions. Nature Neuroscience 7, 286–294. doi:10.1038/nn1202.
  35. Different Forms of Homeostatic Plasticity Are Engaged with Distinct Temporal Profiles: Differential Expression of Homeostatic Plasticity. European Journal of Neuroscience 23, 1575–1584. doi:10.1111/j.1460-9568.2006.04692.x.
  36. Effects of Synaptic Depression and Adaptation on Spatiotemporal Dynamics of an Excitatory Neuronal Network. Physica D: Nonlinear Phenomena 239, 547–560. doi:10.1016/j.physd.2009.06.003.
  37. Stability of Bumps in Piecewise Smooth Neural Fields with Nonlinear Adaptation. Physica D: Nonlinear Phenomena 239, 1048–1060. doi:10.1016/j.physd.2010.02.016.
  38. Mechanisms of Systems Memory Consolidation during Sleep. Nature Neuroscience 22, 1598–1610. doi:10.1038/s41593-019-0467-3.
  39. Neurogenesis-Dependent Transformation of Hippocampal Engrams. Neuroscience Letters 762, 136176. doi:10.1016/j.neulet.2021.136176.
  40. Multiple Bumps in a Neuronal Model of Working Memory. SIAM Journal on Applied Mathematics 63, 62–97. doi:10.1137/S0036139901389495.
  41. Plasticity at Hippocampal to Prefrontal Cortex Synapses: Dual Roles in Working Memory and Consolidation. Hippocampus 10, 438–446. doi:10.1002/1098-1063(2000)10:4<438::AID-HIPO10>3.0.CO;2-3.
  42. Learning Enhances the Survival of New Neurons beyond the Time When the Hippocampus Is Required for Memory. The Journal of Neuroscience 24, 7477–7481. doi:10.1523/JNEUROSCI.0204-04.2004.
  43. Why Is the Cortex a Slow Learner? Nature 411, 248–249. doi:10.1038/35077185.
  44. Control of the Repetitive Discharge of Rat CA 1 Pyramidal Neurones in Vitro. The Journal of Physiology 354, 319–331. doi:10.1113/jphysiol.1984.sp015378.
  45. Simple Memory: A Theory for Archicortex, in: Vaina, L. (Ed.), From the Retina to the Neocortex. Birkhäuser Boston, Boston, MA, pp. 59–128. doi:10.1007/978-1-4684-6775-8_5.
  46. Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annual Review of Neuroscience 23, 649–711. doi:10.1146/annurev.neuro.23.1.649.
  47. Why There Are Complementary Learning Systems in the Hippocampus and Neocortex: Insights from the Successes and Failures of Connectionist Models of Learning and Memory. Psychological Review 102, 419–457. doi:10.1037/0033-295X.102.3.419.
  48. Tracelink: A Model of Consolidation and Amnesia. Cognitive Neuropsychology 22, 559–587. doi:10.1080/02643290442000194.
  49. A Role for Circuit Homeostasis in Adult Neurogenesis. Trends in Neurosciences 28, 653–660. doi:10.1016/j.tins.2005.09.007.
  50. Reliable Activation of Immature Neurons in the Adult Hippocampus. PLoS ONE 4, e5320. doi:10.1371/journal.pone.0005320.
  51. Memory Consolidation, Retrograde Amnesia and the Hippocampal Complex. Current Opinion in Neurobiology 7, 217–227. doi:10.1016/S0959-4388(97)80010-4.
  52. Memory Reconsolidation: An Update. Annals of the New York Academy of Sciences 1191, 27–41. doi:10.1111/j.1749-6632.2010.05443.x.
  53. Interplay of Hippocampus and Prefrontal Cortex in Memory. Current Biology 23, R764–R773. doi:10.1016/j.cub.2013.05.041.
  54. Pattern Association and Consolidation Emerges from Connectivity Properties between Cortex and Hippocampus. PLoS ONE 9, e85016. doi:10.1371/journal.pone.0085016.
  55. Neural Field Theory of Synaptic Plasticity. Journal of Theoretical Biology 285, 156–163. doi:10.1016/j.jtbi.2011.06.023.
  56. Neural Networks and Brain Function. Oxford University Press. doi:10.1093/acprof:oso/9780198524328.001.0001.
  57. Efficient Partitioning of Memory Systems and Its Importance for Memory Consolidation. PLoS Computational Biology 9, e1003146. doi:10.1371/journal.pcbi.1003146.
  58. Retrograde Amnesia and Memory Consolidation: A Neurobiological Perspective. Current Opinion in Neurobiology 5, 169–177. doi:10.1016/0959-4388(95)80023-9.
  59. The Medial Temporal Lobe. Annual Review of Neuroscience 27, 279–306. doi:10.1146/annurev.neuro.27.070203.144130.
  60. Coordinated Hippocampal-Thalamic-Cortical Communication Crucial for Engram Dynamics underneath Systems Consolidation. Nature Communications 13, 840. doi:10.1038/s41467-022-28339-z.
  61. The Role of Engram Cells in the Systems Consolidation of Memory. Nature Reviews Neuroscience 19, 485–498. doi:10.1038/s41583-018-0031-2.
  62. Memory Consolidation. 0 ed., Psychology Press. doi:10.4324/9781315802626.
  63. Neurogenesis Interferes with the Retrieval of Remote Memories: Forgetting in Neurocomputational Terms. Cognition 125, 13–25. doi:10.1016/j.cognition.2012.07.002.
  64. Memory, Modelling and Marr: A Commentary on Marr (1971) ‘Simple Memory: A Theory of Archicortex’. Philosophical Transactions of the Royal Society B: Biological Sciences 370, 20140383. doi:10.1098/rstb.2014.0383.
  65. Memory Formation and Long-Term Retention in Humans and Animals: Convergence towards a Transformation Account of Hippocampal– Neocortical Interactions. Neuropsychologia 48, 2339–2356. doi:10.1016/j.neuropsychologia.2010.04.016.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube