Mesoscopic description of hippocampal replay and metastability in spiking neural networks with short-term plasticity (2204.01675v2)
Abstract: Bottom-up models of functionally relevant patterns of neural activity provide an explicit link between neuronal dynamics and computation. A prime example of functional activity pattern is hippocampal replay, which is critical for memory consolidation. The switchings between replay events and a low-activity state in neural recordings suggests metastable neural circuit dynamics. As metastability has been attributed to noise and/or slow fatigue mechanisms, we propose a concise mesoscopic model which accounts for both. Crucially, our model is bottom-up: it is analytically derived from the dynamics of finite-size networks of Linear-Nonlinear Poisson neurons with short-term synaptic depression. As such, noise is explicitly linked to spike noise and network size, and fatigue is explicitly linked to synaptic dynamics. To derive the mesosocpic model, we first consider a homogeneous spiking neural network and follow the temporal coarse-graining approach of Gillespie ("chemical Langevin equation"), which can be naturally interpreted as a stochastic neural mass model. The Langevin equation is computationally inexpensive to simulate and enables a thorough study of metastable dynamics in classical setups (population spikes and Up-Down states dynamics) by means of phase-plane analysis. This stochastic neural mass model is the basic component of our mesoscopic model for replay. We show that our model faithfully captures the stochastic nature of individual replayed trajectories. Moreover, compared to the deterministic Romani-Tsodyks model of place cell dynamics, it exhibits a higher level of variability in terms of content, direction and timing of replay events, compatible with biological evidence and could be functionally desirable. This variability is the product of a new dynamical regime where metastability emerges from a complex interplay between finite-size fluctuations and local fatigue.