Is $γ_{KLS}$-generalized statistical field theory complete? (2404.01280v1)
Abstract: In this Letter we introduce some field-theoretic approach for computing the critical properties of $\gamma_{KLS}$-generalized systems undergoing continuous phase transitions, namely $\gamma_{KLS}$-statistical field theory. From this new approach emerges the new generalized O($N$)${\gamma{KLS}}$ universality class, which is capable of encompassing nonconventional critical exponents for real imperfect systems known as manganites not described by standard statistical field theory. We compare the generalized results with those obtained from measurements in manganites. The agreement was satisfactory, where the relative errors are $< 5\%$ for the most of manganites used. Although the present approach describes the aforementioned nonconventional critical indices, we show that it is not complete. For example, it does not explain the results for some other manganites, being explained only for nonextensive statistical field theory recently introduced in literature. So, $\gamma_{KLS}$-statistical field theory has to be discarded for statistical mechanics generalization purposes.
- J. Yang and Y. P. Lee, Appl. Phys. Lett. 91, 142512 (2007).
- A. K. Pramanik and A. Banerjee, Phys. Rev. B 79, 214426 (2009).
- P. R. S. Carvalho, Phys. Lett. B 838, 137683 (2023).
- K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).
- C. Tsallis, J. Stat. Phys. 52, 479 (1988).
- G. Kaniadakis, Physica A 296, 405 (2001).
- C. Beck and E. Cohen, Physica A 322, 267 (2003).
- G. Kaniadakis, Eur. Phys. J. B 70, 3 (2009).
- A. Plastino and M. C. Rocca, Chin. Phys. C 42, 053102 (2018).
- A. Arrott and J. E. Noakes, Phys. Rev. Lett. 19, 786 (1967).
- J. S. Kouvel and M. E. Fisher, Phys. Rev. 136, A1626 (1964).
- L. Zambelli and O. Zanusso, Phys. Rev. D 95, 085001 (2017).
- M. Stephen and J. McCauley, Phys. Lett. A 44, 89 (1973).
- J. Hager and L. Schäfer, Phys. Rev. E 60, 2071 (1999).
- J. S. Hager, J. Phys. A 35, 2703 (2002).
- G. Slade, Commun. Math. Phys. 358, 343 (2018).
- D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
- E. Brézin and J. Zinn-Justin, Phys. Rev. B 13, 251 (1976).
- T. H. Berlin and M. Kac, Phys. Rev. 86, 821 (1952).
- H. E. Stanley, Phys. Rev. 176, 718 (1968).
- M. M. Leite, Phys. Rev. B 67, 104415 (2003a).
- M. M. Leite, Phys. Rev. B 72, 224432 (2005).
- L. C. de Albuquerque and M. M. Leite, J. Phys. A 34, L327 (2001).
- M. M. Leite, Phys. Lett. A 326, 281 (2004).
- M. M. Leite, Phys. Rev. B 61, 14691 (2000).
- M. M. Leite, Phys. Rev. B 68, 052408 (2003b).
- C. F. Farias and M. M. Leite, J. Stat. Phys. 148, 972 (2012).
- J. B. da Silva Jr. and M. M. Leite, J. Math. Phys. 53, 043303 (2012).
- M. V. S. Santos and M. M. Leite, J. Phys. Conf. Ser. 490, 012232 (2014).
- M. I. de Sena and M. M. Leite, J. Phys. Conf. Ser. 574, 012170 (2015).
- M. M. Leite, EPL 137, 34001 (2022).
- W. K. Theumann and M. A. Gusmão, Phys. Rev. B 31, 379 (1985).
- C. Itzykson and J. M. Drouffe, Statistical Field Theory: Vol. 1 (Cambridge Monographs on Mathematical Physics, 1989).
- J. Zinn-Justin, Nucl. Phys. B 367, 105 (1991).
- Hans-Karl Janssen and U. C. Täuber, Ann. Phys. 315, 147 (2005).
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.