Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Hadwiger's covering problem in small dimensions (2404.00547v1)

Published 31 Mar 2024 in math.MG

Abstract: Let $H_n$ be the minimal number such that any $n$-dimensional convex body can be covered by $H_n$ translates of interior of that body. Similarly $H_ns$ is the corresponding quantity for symmetric bodies. It is possible to define $H_n$ and $H_ns$ in terms of illumination of the boundary of the body using external light sources, and the famous Hadwiger's covering conjecture (illumination conjecture) states that $H_n=H_{n}s=2n$. In this note we obtain new upper bounds on $H_n$ and $H_{n}s$ for small dimensions $n$. Our main idea is to cover the body by translates of John's ellipsoid (the inscribed ellipsoid of the largest volume). Using specific lattice coverings, estimates of quermassintegrals for convex bodies in John's position, and calculations of mean widths of regular simplexes, we prove the following new upper bounds on $H_n$ and $H_ns$: $H_5\le 933$, $H_6\le 6137$, $H_7\le 41377$, $H_8\le 284096$, $H_4s\le 72$, $H_5s\le 305$, and $H_6s\le 1292$. For larger $n$, we describe how the general asymptotic bounds $H_n\le \binom{2n}{n}n(\ln n+\ln\ln n+5)$ and $H_ns\le 2n n(\ln n+\ln\ln n+5)$ due to Rogers and Shephard can be improved for specific values of $n$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.